CHAPTER 2

Number Systems

(Solutions to Odd-Numbered Problems)

Review Questions

- 1. A number system shows how a number can be represented using distinct symbols.
- 3. The base (or radix) is the total number of symbols used in a positional number system.
- 5. The binary system is a positional number system that uses two symbols (0 and 1) to represent a number. The word binary is derived from the Latin root *bini* (two by two) or *binarius* (related to two). In the binary system, the base is 2.
- 7. The hexadecimal system is a positional number system with sixteen symbols. The word hexadecimal is derived from the Greek root *hex* (six) and the Latin root *decem* (ten). To be consistent with decimal and binary, it should have been called *sexadecimal*, from Latin roots *sex* and *decem*. In the hexadecimal system, the base is 16.
- 9. Four bits in binary is one hexadecimal digit.

Multiple-Choice Questions

11	. c	13.	b				15.	a			1	7.	b			1	9. c				21.	b	
Exe	ercises																						
23.																							
	Place values		64		32		16		8		4		2		1		1/2		1/4		1/8		
	(01101)	2 =		+		+	0	+	8	+	4	+	0	+	1	+		+		+		=	13
	(1011000)	2 =	64	+	0	+	16	+	8	+	0	+	0	+	0	+		+		+		=	88
	(011110.01)	2 =		+	0	+	16	+	8	+	4	+	2	+	0	+	0	+	1/4	+		=	30.25
	(111111.111) =		+	32	+	16	+	8	+	4	+	2	+	1	+	1/2	+	1/4	+	1/8	=	63.875
	:	2																					

0	5	
4	J	•

Place values	512		64		8		1		1/8		1/64	
(237) ₈ =	=	+	2 × 64	+	3 × 8	+	7 imes 1	+		+		= 159
(2731) ₈ =	2 × 512	+	7 × 64	+	3 × 8	+	1×1	+		+		= 1497
(617) ₈ =	-	+	6× 64	+	1×8	+	7 imes 1	+	7 imes1/8	+		= 399.875
(21.11) ₈ =	=	+		+	2×8	+	1×1	+	$1 \times 1 / 8$	+	1×1/64	≈ 17.141

27.

a. $1156 = (2204)_8$ as shown below:

)	←	2	←	18	←	144	←	1156
		\downarrow		\downarrow		\downarrow		\downarrow
		2		2		0		4

b. $99 = (134)_8$ as shown below:

0	←	1	←	12	←	99
		\downarrow		\downarrow		\downarrow
		1		4		3

c. $11.4 = (13.3146)_8$ as shown below:

0	←	1	←	11		.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8	\rightarrow	4
		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
		1		3	•	3		1		4		6		

d. $72.8 = (110.6314)_8$ as shown below:

0	←	1	←	9	←	72		.8	\rightarrow	.4	\rightarrow	.2	\rightarrow	.6	\rightarrow	.8
		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
		1		1		0	•	6		3		1		4		

29.

$(514)_8 =$		101	001	100			=	1	0100	1100			=	(14C) ₁₆
$(411)_8 =$		100	001	001			=	1	0000	1001			=	(109) ₁₆
$(13.7)_8 =$			001	111	•	111	=		00	1011	٠	1110	=	(B.E) ₁₆
$(1256)_8 =$	001	010	101	110			=	0010	0101	1110			=	(25E) ₁₆

31.

	001	101			=	(15) ₈
001	011	000			=	(130) ₈
	011	110	•	010	=	(36.2) ₈
	111	111	•	111	=	(77.7) ₈
	001	001 001 011 011 111	001 101 001 011 000 011 110 111 111	001 101 001 011 000 011 110 • 111 111 •	001 101 001 011 000 011 110 • 011 111 • 111	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

33.

$(01111001)_2$	=	1	+	0	+	0	+	8	+	16	+	32	+	64	+	0	21 =	12
(01001110) ₂	=	0	+	2	+	4	+	8	+	0	+	0	+	64	+	0	78 =	,
(11111111) ₂	=	1	+	2	+	4	+	8	+	16	+	32	+	64	+	128	55 =	2
(11010110) ₂	=	0	+	2	+	4	+	0	+	16	+	0	+	64	+	128	14 =	2

35.

a. binary: $2^6 - 1 = 63$

- **b.** decimal: $10^6 1 = 999,999$
- c. hexadecimal: $16^6 1 = 16,777,215$
- d. octal: $8^6 1 = 262,143$

37.

- a. $\left\lceil 5 \times (\log 2) / (\log 10) \right\rceil = \left\lceil 16.6 \right\rceil = 2$
- b. $\lceil 3 \times (\log 8) / (\log 10) \rceil = \lceil 16.6 \rceil = 3$
- c. $\left\lceil 3 \times (\log 16) / (\log 10) \right\rceil = \left\lceil 16.6 \right\rceil = 4$

39. Using the result of previous exercise, we can find the equivalent as:

a. $7.1875 = (111)_2 + (0.001)_2 + (0.0001)_2 = (111.0011)_2$

- **b.** $12.540625 = (1100)_2 + (0.1)_2 + (0.001)_2 + (0.000001)_2 = (1100.101001)_2$
- c. $11.40625 = (1011)_2 + (0.01)_2 + (0.001)_2 + (0.00001)_2 = (1011.01101)_2$
- **d**. $0.375 = (0.01)_2 + (0.001)_2 = (0.011)_2$

41.

a. $\lceil \log_2 1000 \rceil = \lceil \log_1 1000 / \log_2 \rceil = \lceil 9.97 \rceil = 10$ b. $\lceil \log_2 100,000 \rceil = \lceil \log_1 100,000 / \log_2 2 \rceil = \lceil 16.6 \rceil = 17$ c. $\lceil \log_2 64 \rceil = \lceil \log_2 2^6 \rceil = \lceil 6 \times \log_2 2 \rceil = \lceil 6 \rceil = 6$ d. $\lceil \log_2 256 \rceil = \lceil \log_2 2^8 \rceil = \lceil 8 \times \log_2 2 \rceil = \lceil 8 \rceil = 8$ 43.

a.	17×256^3	+	234×256^2	+	34×256^{1}	+	14×256^{0}	=	300,556,814
b.	14×256^3	+	56×256^2	+	234×256^1	+	$56 imes 256^0$	=	238,611,000
c.	110×256^3	+	14×256^2	+	56×256^1	+	$78 imes 256^0$	=	1,864,425,678
d.	24×256^3	+	56×256^2	+	13×256^1	+	11×256^0	=	406,326,539

- 45.
 a. 15
 b. 27
 c. This is not a valid Roman Numeral (V cannot come before L)
 d. 1157
 47.
 - a. Not valid because I cannot come before M
 - b. Not valid because I cannot come before C
 - c. Not valid because V cannot come before C
 - d. Not valid because 5 is written as V not VX

49.

a. First, we convert the three numbers to base 60 as shown below:

0 ←	- 3 +	- 188 +	- 11291	0	←	1	←	60	←	3646	0	←	59	←	35
	\downarrow	\downarrow	\downarrow			\downarrow		\downarrow		\downarrow			\downarrow		,
	3	8	11			1		0		46			59		4

The equivalent Babylonian numerals are shown in Figure S2.49

Figure S2.49 Exercise 49

b. In Babylonian numerals, they used extra space when a zero was needed in the middle of the number. When a zero was need at left, they did not use anything; They probably recognized it from the context.