CHAPTER 3

Data Storage

(Solutions to Odd-Numbered Problems)

Review Questions

1. We discussed five data types: number, text, audio, image, and video.
2. In the bitmap graphic method each pixel is represented by a bit pattern.
3. The three steps are sampling, quantization, and encoding.
4. In both representations, the upper half of the range represents the negative numbers. However, the wrapping is different as shown in Figure S3.7. In addition, there are two zeros in sign-and-magnitude but only one in two's complement.

Figure S3.7

9. In both systems, the leftmost bit represents the sign. If the leftmost bit is 0 , the number is positive; if it is 1 , the number is negative.

Multiple-Choice Questions

11. c
12. d
13. b
14. a
15. a
16. d
17. c
18. d
19. b

Exercises

29. $10^{2}=100$ if zero is allowed. $9^{2}=81$ if zero is not allowed.
30. $2^{n}=8 \rightarrow n=3$ or $\log _{2} 8=3$
31. $2^{n}=900 \rightarrow n \approx 10$ or $\log _{2} 900=9.81 \rightarrow 10$. With $n=10$ we can uniquely assign $2^{10}=1024$ bit pattern. Then $1024-900=124$ patterns are unassigned. These unassigned patterns are not sufficient for extra 300 employees. If the company hires 300 new employees, it is needed to increase the number of bits to 11 .
32. 256 level can be represented by 8 bits because $2^{8}=256$. Therefore, the number of bits per seconds is
$(8000$ sample $/$ sec $) \times(8$ bits $/$ sample $)=64,000$ bits $/$ seconds
33.

a. $41=32+8+1=(0000000000101001)_{2}$
b. $411=256+128+16+8+2+1=(0000000110011011)_{2}$
c. $1234=1024+128+64+16+2=(0000010011010010)_{2}$
d. $342=256+64+16+4+2=(0000000101010110)_{2}$
39.
a. $102=$

Convert 102 to binary $\quad \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array}$
b. $-179=$

Convert 179 to binary	0	0	0	0	0	0	0	0	1	0	1	1	0	0	1	1
	\downarrow															

Apply two's complement operation $\begin{array}{lllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \mathbf{O} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 1\end{array}$
c. $534=$

Convert 534 to binary $\begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$
d. Overflow occurs because 62,056 is not in the range $-32768,+32767$
41.
a. $01110111=$

Leftmost bit is 0 . The sign is +	0	1	1	1	0	1	1	1
Integer changed to decimal								

Sign is added +119
b. $11111100=$

Leftmost bit is 1 . The sign is -	1	1	1	1	1	1	0	0
	\downarrow							
Apply two's complement operation	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0

Integer changed to decimal 4
Sign is added -4
c. $01110100=$

Leftmost bit is 0 . The sign is $+\quad 0$| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Integer changed to decimal 116
Sign is added +116
d. $11001110=$

Leftmost bit is 1 . The sign is -	1	1	0	0	1	1	1	0
	\downarrow							
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	1	0
Apply two's complement operation								50
Integer changed to decimal							-50	

43.

a. $01110111 \rightarrow 10001001 \rightarrow 01110111$
b. $11111100 \rightarrow 00000100 \rightarrow 11111100$
c. $01110100 \rightarrow 10001100 \rightarrow 01110100$
d. $11001110 \rightarrow 00110010 \rightarrow 11001110$
45. Answers are shown with space between the three parts for clarity
a. $S=1$,
$\mathrm{E}=0+127=127=(01111111)_{2}$,
$\mathrm{M}=10001$ (plus 18 zero added at the right to make the number of bits 23)
$\rightarrow 10111111110001000000000000000000$
b. $S=0$,
$\mathrm{E}=3+127=130=(10000010)_{2}$,
$\mathrm{M}=111111$ (plus 17 zero added at the right)
$\rightarrow 01000001011111100000000000000000$
c. $\mathrm{S}=0$
$\mathrm{E}=-4+127=123=(01111011)_{2}$,
$\mathrm{M}=01110011$ (plus 15 zero added at the right)
$\rightarrow 00111101101110011000000000000000$
d. $S=1$
$E=-5+127=122=(01111010)_{2}$,
$\mathrm{M}=01101000$ (plus 15 zero added at the right)
$\rightarrow \mathbf{1 0 1 1 1 1 0 1 0} 01101000000000000000000$
47. Answers are shown with spaces between the three parts for clarity
a. $7.1875=(111.0011)_{2}=2^{2} \times 1.110011$

S = 0
$\mathrm{E}=2+127=129=(10000001)_{2}$
$\mathrm{M}=110011$ (plus 17 zero at the right)
$\rightarrow 01000000111001100000000000000000$
b. $-12.640625=(-1100.101001)_{2}=-2^{3} \times 1.100101001$
$\mathrm{S}=1$
$\mathrm{E}=3+127=130=(10000010)_{2}$
$\mathrm{M}=100101001$ (plus 14 zero at the right)
$\rightarrow 11000001010010100100000000000000$
c. $11.40625=(1011.01101)_{2}=2^{3} \times 1.01101101$

S = 0
$\mathrm{E}=3+127=130=(10000010)_{2}$
$\mathrm{M}=01101101$ (plus 15 zero at the right)
$\rightarrow 01000001001101101000000000000000$
d. $-0.375=-0.011=-2^{-2} \times 1.1$

S = 1
$\mathrm{E}=-2+127=125=(01111101)_{2}$
$\mathrm{M}=1$ (plus 22 zero at the right)
$\rightarrow 10111110110000000000000000000000$
49.
a. $53=32+16+4+1=$

+	0	32	16	0	4	0	1	
\downarrow								
0	0	1	1	0	1	0	1	$=$

b. $-107=-(64+32+8+2+1)=$

-	64	32	0	8	0	2	1	
\downarrow								
1	1	1	0	1	0	1	1	$=$

c. $-5=-(4+1)=10000101$

| - | 0 | 0 | 0 | 0 | 4 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| | | | | | | | |
| \downarrow |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |$=\mathbf{1 0 0 0} \mathbf{0 1 0 1}$

d. 154 creates overflow because 154 is not in the range -127 to +127 51.
a. $(01110111)_{2}=$

Leftmost bit is 0 . The sign is + Integer changed to decimal

| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 119

Sign is added
b. $(11111100)_{2}=$

Leftmost bit is 1 . The sign is -

Apply one's complement operation Integer changed to decimal Sign is added
c. $(01110100)_{2}=$

Leftmost bit is 0 . The sign is +
Integer changed to decimal
$\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$
116
Sign is added +116
d. $(11001110)_{2}=$

Leftmost bit is 1 . The sign is -

Apply one's complement operation Integer changed to decimal

49
Sign is added
-49
53.
a. $(01110111)_{2}$

One's complement $=10001000$

10001001
b. $(11111100)_{2}$

$$
\begin{aligned}
& \text { One's complement }=00000011 \\
& \text { +1 } \\
& 00000100
\end{aligned}
$$

Two's complement $=10001001$路
c. $(01110100)_{2}$

One's complement $=10001011$
$+1$
10001100
d. $(11001110)_{2}$

$$
\begin{array}{rr}
\text { One's complement }= & 00110001 \\
+1 \\
00110010
\end{array}
$$

Two's complement $=10001100$迤

Two's complement $=00110010$
55.
a. $+234 \rightarrow 234$
b. $+560 \rightarrow$ Overflow because 560 is not in the range -499 to 499
c. $-125 \rightarrow 874$
d. $-111 \rightarrow 888$
57.
a. $+234 \rightarrow 234$
b. $+560 \rightarrow$ Overflow because 560 is not in the range -500 to 499
c. $-125 \rightarrow 874+1=875$
d. $-111 \rightarrow 888+1=889$
59.
a. $(+\mathrm{B} 14)_{16} \rightarrow(\mathrm{~B} 14)_{16}$
b. $(+\mathrm{FE} 1)_{16} \rightarrow$ Overflow because it is not in the range $(-7 \mathrm{FF})_{16}$ to $(7 \mathrm{FF})_{16}$
c. $(-1 \mathrm{~A})_{16}=(-01 \mathrm{~A})_{16} \rightarrow(\text { FE5 })_{16}$
d. $(-1 \mathrm{E} 2)_{16} \rightarrow(\mathrm{E} 1 \mathrm{D})_{16}$
61.
a. $(+\mathrm{B} 14)_{16} \rightarrow(\mathrm{~B} 14)_{16}$
b. $(+\mathrm{FE} 1)_{16} \rightarrow$ Overflow because it is not in the range $(-800)_{16}$ to $(7 \mathrm{FF})_{16}$
c. $(-1 \mathrm{~A})_{16}=(-01 \mathrm{~A})_{16} \rightarrow(\text { FE5 }+1)_{16}=(\text { FE6 })_{16}$
d. $(-1 \mathrm{E} 2)_{16} \rightarrow(\mathrm{E} 1 \mathrm{D}+1)_{16}=(\mathrm{E} 1 \mathrm{E})_{16}$

