
CHAPTER 11

Data Structures
(Solutions to Odd-Numbered Problems)
Review Questions
1. Arrays, records, and linked lists are three types of data structures discussed in this

chapter.
3. Elements of an array are contiguous in memory and can be accessed by use of an

index. Elements of a linked list are stored in nodes that may be scattered through-
out memory and can only be accessed via the access functions for the list (i.e., the
address of a specific node returned by a search function).

5. An array is stored contiguously in memory. Most computers use row-major storage
to store a two-dimension array.

7. The fields of a node in a linked list are the data and a pointer (address of) the next
node.

9. We use the head pointer to point to the first node in the linked list 

Multiple-Choice Questions 

Exercises
21. Algorithm S11.21 shows a routine in pseudocode that compares two arrays. 

11. d 13. c 15. c 17. a 19. d

Algorithm S11.21 Exercise 21

Algorithm: CompareArrays(A, B)
Purpose: Test if every element in array A equals to its corresponding element in array B
Pre: Arrays A and B of 10 integers
Post: None
Return: true or false
{

i  ←  1                                                  
while (i  ≤  10)                                                
1



2

23. Algorithm S11.23 shows a routine in pseudocode that prints an array. 

25. Algorithm S11.25 shows a binary search routine in pseudocode (see Chapter 8).
Note that we use the binary search on sorted array.        

{
 if A[i] ≠ B[i]           return   false                                            // A is not equal to B 
i  ←  i  +  1

}
return true // A is equal to B 

} 

Algorithm S11.23 Exercise 23

Algorithm: PrintArray (A, r, c)
Purpose: Print the contents of 2-D array
Pre: Given Array A, and values of r (number of rows) and c (number of columns)
Post: Print the values of the elements of A
Return: 
{

i  ←  1                                                  
while (i  ≤ r)                                                
{

j  ←  1
while (j  ≤ c)   
{

print A[i][ j]
j  ←  j + 1

}
i  ←  i + 1

}
} 

Algorithm S11.25 Exercise 25

Algorithm: BinarySearchArray(A, n, x)
Purpose: Apply a binary search on an array A of n elements
Pre: A, n, x // x is the target we are searching for 
Post: None 
Return: flag, i
{

flag ← false
first ← 1
last ← n
while (first ≤ last) 

Algorithm S11.21 Exercise 21



3

27. Algorithm S11.27a shows a delete routine in pseudocode. Note that this algorithm
calls BinarySearch algorithm (Algorithm S11.25) and ShiftUp algorithm (Algo-
rithm S11.27b).     

{
mid = (first + last) / 2
if (x < A[mid]) Last ← mid − 1
if (x > A[mid])   first ← mid + 1
if (x = A[mid]) first ← Last + 1 // x is found

}
if (x > A[mid]) i = mid + 1
if (x ≤ A[mid])   i = mid
if (x = A[mid])   flag ← true
return (flag, i) 

} 
// If flag is true, it means x is found and i is its location.
// If flag is false, it means x is not found; i is the location where the target supposed to be.

Algorithm S11.27a Exercise 27

Algorithm: DeleteSortedArray(A, n, x)
Purpose: Delete an element from a sorted array
Pre: A, n, x // x is the value we want to delete
Post: None 
Return: 
{

{flag, i} ← BinarySearch (A, n, x) // Call binary search algorithm
if (flag = false) // x is not in A
{

print (x is not in the array)
return 

}
ShiftUp (A, n, i) // call shift up algorithm
return // call shift up algorithm

} 

Algorithm S11.27b Exercise 27

Algorithm: ShiftUp (A, n, i)
Purpose: Shift up all elements one place from the last element up to element with index i.
Pre: A, n, i 
Post: None 
Return: 

Algorithm S11.25 Exercise 25



4

29. Algorithm S11.29 shows a routine in pseudocode that adds two fractions.    

31. Algorithm S11.31 shows a routine in pseudocode that multiplies two fractions. 

{
j ← i
while (j ≤ n + 1) 
{

A[j] ← A[ j + 1]
j ← j + 1

}
 

} 

Algorithm S11.29 Exercise 29

Algorithm: AddFraction(Fr1, Fr2)
Purpose: Add two fractions
Pre: Fr1, Fr2 // Assume denominators have nonzero values
Post: None
Return: The resulting fraction (Fr3)
{

x ← gcd (Fr1.denom, Fr2.denom) // Call gcd (see Exercise 8.57)
y ← (Fr1.denom × Fr2.denom) / x // y is the least common denominator
Fr3.num ← (y / Fr1.denom) × Fr1.num + (y / Fr2.denom) × Fr2.num
Fr3.denom ← y
z ← gcd (Fr3.num, Fr3.denom) // Simplifying the fraction
Fr3.num ← Fr3.num / z
Fr3.denom ← Fr3.denom / z
return (Fr3) 

} 

Algorithm S11.31 Exercise 31

Algorithm: MultiplyFraction(Fr1, Fr2)
Purpose: Multiply two fractions
Pre: Fr1, Fr2 // Assume denominators with nonzero values
Post: None
Return: Fr3
{

Fr3.num ← Fr1.num × Fr2.num
Fr3.denom ← Fr1.denom × Fr2.denom

z ← gcd (Fr3.num, Fr3.denom) // Simplifying the fraction

Algorithm S11.27b Exercise 27



5

33. Figure S11.33 shows a linked list of records. 

35. Since list = null, the SearchLinkedList algorithm performs new ← list. This cre-
ates a list with a single node. 

37. Algorithm S11.37 shows a routine for finding the average data in a linked list.

39. Figure S11.39a shows that if pre is not null, the two statements cur ← (*cur).link
and pre ← (*pre).link move the two pointers together to the right. In this case the
two statements are equivalent to the ones we discussed in the text.  
However, the statement pre ← (*pre).link does not work when pre is null

Fr3.num ← Fr3.num / z
Fr3.denom ← Fr3.denom / z
return (Fr3) 

} 

Figure S11.33 Exercise 33

Algorithm S11.37 Exercise 37

Algorithm: LinkedListAverage (list)
Purpose: Evaluate average of numbers in a linked list
Pre: list
Post: None
Return: Average value
{

counter ← 1                                       
sum ← 0                                       
walker ← list                                       
while (walker ≠ null)                                       
{

sum ← sum + (*walker).data                                                                            
walker ← (*walker).link                                                                             
counter ← counter + 1                                                                             

}
average ← sum / counter
return average

}

Algorithm S11.31 Exercise 31

id name grade
Data Link



6

because, in this case, (*pre).link does not exist (Figure S11.39b). For this reason,
we should avoid using this method.    

Figure S11.39a Exercise 39

Figure S11.39b Exercise 39

pre

Before

After

cur

pre cur

*pre
(*pre).link

*cur
(*cur).link

list

pre cur

*cur

(*cur).link


	Chapter 11
	Data Structures (Solutions to Odd-Numbered Problems)

	Review Questions
	1. Arrays, records, and linked lists are three types of data structures discussed in this chapter.
	3. Elements of an array are contiguous in memory and can be accessed by use of an index. Elements of a linked list are stored in...
	5. An array is stored contiguously in memory. Most computers use row-major storage to store a two-dimension array.
	7. The fields of a node in a linked list are the data and a pointer (address of) the next node.
	9. We use the head pointer to point to the first node in the linked list

	Multiple-Choice Questions
	11. d
	13. c
	15. c
	17. a
	19. d

	Exercises
	21. Algorithm S11.21 shows a routine in pseudocode that compares two arrays.
	Algorithm S11.21 Exercise 21
	23. Algorithm S11.23 shows a routine in pseudocode that prints an array.

	Algorithm S11.23 Exercise 23
	25. Algorithm S11.25 shows a binary search routine in pseudocode (see Chapter 8). Note that we use the binary search on sorted array.

	Algorithm S11.25 Exercise 25
	27. Algorithm S11.27a shows a delete routine in pseudocode. Note that this algorithm calls BinarySearch algorithm (Algorithm S11.25) and ShiftUp algorithm (Algorithm S11.27b).

	Algorithm S11.27a Exercise 27
	Algorithm S11.27b Exercise 27
	29. Algorithm S11.29 shows a routine in pseudocode that adds two fractions.

	Algorithm S11.29 Exercise 29
	31. Algorithm S11.31 shows a routine in pseudocode that multiplies two fractions.

	Algorithm S11.31 Exercise 31
	33. Figure S11.33 shows a linked list of records.
	Figure S11.33 Exercise 33

	35. Since list = null, the SearchLinkedList algorithm performs new ¨ list. This creates a list with a single node.
	37. Algorithm S11.37 shows a routine for finding the average data in a linked list.

	Algorithm S11.37 Exercise 37
	39. Figure S11.39a shows that if pre is not null, the two statements cur ¨ (*cur).link and pre ¨ (*pre).link move the two pointe...
	Figure S11.39a Exercise 39
	Figure S11.39b Exercise 39




