
CHAPTER 12

Abstract Data Types
(Solutions to Odd Numbered Problems)
Review Questions

1. An abstract data type (ADT) is a data declaration packaged together with the oper-
ations that are meaningful for the data type. In an ADT, the operations used to
access the data are known, but the implementation of the operations are hidden.

3. A queue is a linear list in which data can only be inserted at one end, called the
rear, and deleted from the other end, called the front. These restrictions ensure that
the data are processed through the queue in the order in which they are received. In
other words, a queue is a first in, first out (FIFO) structure. Four basic queue oper-
ations defined in this chapter are queue, enqueue, dequeue, and empty.

5. A tree consists of a finite set of elements, called nodes (or vertices), and a finite set
of directed lines, called arcs, that connect pairs of the nodes. If the tree is not
empty, one of the nodes, called the root, has no incoming arcs. The other nodes in
a tree can be reached from the root following a unique path, which is a sequence of
consecutive arcs. A binary tree is a tree in which no node can have more than two
subtrees. A binary search tree (BST) is a binary tree with one extra property: the
key value of each node is greater than the key values of all nodes in each left sub-
tree and smaller than the value of all nodes in each right subtree.

7. A graph is an ADT made of a set of nodes, called vertices, and set of lines connect-
ing the vertices, called edges or arcs. Graphs may be either directed or undirected.
In a directed graph, or digraph, each edge, which connects two vertices, has a
direction (arrowhead) from one vertex to the other. In an undirected graph, there is
no direction.

9. General linear lists are used in situations where the elements are accessed ran-
domly or sequentially. For example, in a college, a linear list can be used to store
information about the students who are enrolled in each semester.
1

2

Multiple-Choice Questions

Exercises
27.

29.

11. b 13. b 15. d 17. a 19. c 21. b
23. a 25. b

stack(Temp)

while (NOT empty (S1))

{

pop (S1, x)

push (Temp, x) // Temp is a temporary stack

}

while (NOT empty (Temp))

{

pop (Temp, x)

push (S2, x)

}

stack(Temp)

while (NOT empty (S2))

{

pop (S2, x)

push (Temp, x) // Temp is a temporary stack

}

while (NOT empty (Temp))

{

pop (Temp, x)

push (S2, x)

}

3

31. Algorithm S12.31 shows the pseudocode.

33.

35.

Algorithm S12.31 Exercise 31
Algorithm: Palindrome(String[1 … n])
Purpose: It checks if a string is a palindrome
Pre: Given: a string
Post:
Return: true (the string is a palindrome) or false (the string is not a palindrome)
{

stack (S)
i ← 1
while i ≤ n
{

C ← string[i]
push (S, C)
i ← i + 1

}
i ← 1
while i ≤ n
{

pop (S, x)
if (x ≠ sting[i]) return false

}
return true

}

while (NOT empty (Q))
{

dequeue (Q, x) // x will be discarded
}

while (NOT empty (Q2)) // First we empty Q2.
{

dequeue (Q2, x)
}
while (NOT empty (Q1))
{

dequeue (Q1, x)
enqueue (Temp, x)

}
while (NOT empty (Temp))
{

dequeue (Temp, x)
enqueue (Q1, x)
enqueue (Q2, x)

}

4

37. Algorithm S12.37 shows the pseudocode.

Algorithm S12.37 Exercise 37

Algorithm: CompareQueue(Q1, Q2)
Purpose: Check if two queues are the same
Pre: Given: Q1 and Q2
Post:
Return: true (Q1 = S2) or false (Q1 ≠ S2)
{

flag ← true
Queue(Temp1)
Queue(Temp2)
while (NOT empty (Q1) OR NOT empty (Q2))
{

if (NOT empty (Q1))
{

dequeue (Q1, x)
enqueue (Temp1, x)

}
if (NOT empty (Q2))
{

dequeue (Q2, y)
enqueue (Temp2, y)

}
if (x ≠ y) flag ← false
if (NOT empty (Q1) XOR NOT empty (Q2)) flag ← false

}
while (NOT empty (Temp1) OR NOT empty (Temp2))
{

if (NOT empty (Temp1))
{

dequeue (Temp1, x)
enqueue (Q1, x)

}
if (NOT empty (Temp2))
{

dequeue (Temp2, y)
enqueue (Q2, y)

}
return flag

}

5

39. The preorder traversal JCBADEFIGH tells us that node J is the root. The inorder
traversal ABCEDFJGIH implies that nodes ABCEDF (in the left of J) are in the
left subtree and nodes GIH (in the right of J) are in the right subtree. Following the
same logic for each subtree we build the binary tree as shown in Figure S11.39.

41. The postorder traversal GFDABEC tells us that node C is the root. The inorder tra-
versal ABDCEFG tell us that nodes ABD (in the left of C) are in the left subtree
and nodes EFG (in the right of A) are in the right subtree (Figure S11.41). We can
decompose the left subtree into two nodes, but the right subtree cannot be decom-
posed because nodes EFG are not contiguous in the postorder traversal. We cannot
find the root of this subtree. There are some errors in the postorder traversal listing.

Figure S11.39 Exercise 39

Figure S11.41

GD

A

B

C

E F

J

I

H

J

C I

G HAB EDF

J

ABCEDF GIH

a. Step 1 b. Step 2

c. Final tree

B

A D

C

A

ABD EFG
EFG

a. Step 1 b. Step 2

6

43. Algorithm S12.43 shows the pseudocode.

Algorithm S12.43 Exercise 43

Algorithm: StackADTLinkedListImplementation
Purpose: Implementing stack operations with linked list

stack (Stack S) // Stack operation
{

allocate record S of two fields
S.top ← null
S.count ← 0

}

push (Stack S, DataRecord x) // Push operation
{

Allocate a node and a new pointer
new ← address of the allocated node
(*new).data ← x
(*new).link ← null
if (S.top = null) S.top ← new
else
{

(*new).link ← S.top
S.top ← new

}
S.count ← S.count + 1

}

pop (Stack S, DataRecord x) // Pop operation
{

x ← *(S.top).data
S.top ← *(S.top).link
S.count ← S.count −1

}

empty (Stack S) // Empty operation
{

if (S.count = 0) return true
else return false

}

7

45. Algorithm S12.45 shows the pseudocode.
Algorithm S12.45 Exercise 45
Algorithm: QueueADTLinkedListImplementation
Purpose: Implementing queue operations with linked list
queue (Queue Q) // Queue operation
{

allocate record Q of three fields
Q.count ← 0
Q.front ← null
Q.rear ← null

}
enqueue (Queue Q, DataRecord x) // enqueue operation
{

Allocate a node and a new pointer
new ← address of the allocated node
(*new).data ← x
(*new).link ← null
if (Q.count = 0)

Q.front ← new
Q.rear ← new

else
{

if (Q.count = 1)
{

(*front).link ← new
rear ← (*front).link

}
else (*rear).link ← new

}
Q.count ← Q.count + 1

}
dequeue (Queue Q, DataRecord x) // Dequeue operation
{

x ← A[Q.front]
if (Q.count = 1)

Q.front ← null
Q.rear ← null

else
{

if (Q.count = 1)
{

(*front).link ← new
rear ← (*front).link

}
else front ← (*front).link

}
Q.count ← Q.count − 1

empty (Queue Q) // Empty operation
{

if (Q.count = 0) return true
else return false

}

8

47. Algorithm S12.47 shows the pseudocode.

Algorithm S12.47 Exercise 47
Algorithm: ListADTLinkedListImplementation
Purpose: Implementing list operations with a linked list
{

Include SearchLinkedList algorithm from chapter 11
}

list (List L) // List operation
{

allocate record L of two fields
L.count ← 0
L.first ← null

}

insert (List L, DataRecord x) // Insert operation
{

Allocate a node and a new pointer
new ← address of the allocated node
(*new).data ← x
(*new).link ← null
if (L.count = 0) // List is empty
{

L.first ← new
L.count ← L.count + 1

else
{

 SearchLinkedList(L, x, pre, cur, flag)
 if (flag = true) return L // No duplicate
 if (pre = null) // Insertion at the beginning
 {
 cur ← (*new).link
 L.first ← new
 L.count ← L.count + 1
 return L
 }
 if (cur = null) // Insertion at the end
 {
 (*pre).link ← new
 (*new).link ← null
 L.count ← L.count + 1
 return L
 }

(*new).link ← cur // Insertion in the middle
(*pre).link ← null
return L
L.count ← L.count + 1

}
}

9

delete (List L, DataRecord x) // Delete operation
{

SearchLinkedList(L, x, pre, cur, flag)
 if (flag = false) return L // Target not found
 if (pre = null) // Delete the first node
 {
 L.first ← (*cur).link
 L.count ← L.count − 1
 return L
 }

(*pre).link ← (∗cur).link // Delete other nodes
L.count ← L.count − 1

}

retrieve (List L, DataRecord x) // Retrieve operation
{

SearchLinkedList(L, x, pre, cur, flag)
 if (flag = false) return error // Target not found
 return (*cur).data
}

traverse (List L, Process) // Traverse operation
{

walker ← 1
while (walker ≠ null)
{

Process (*walker).data
walker ← (*walker).link

}
}

empty (L) // Empty operation
{

if (L.count = 0) return true
else return false

}

Algorithm S12.47 Exercise 47

	Chapter 12
	Abstract Data Types (Solutions to Odd Numbered Problems)

	Review Questions
	1. An abstract data type (ADT) is a data declaration packaged together with the operations that are meaningful for the data type. In an ADT, the operations used to access the data are known, but the implementation of the operations are hidden.
	3. A queue is a linear list in which data can only be inserted at one end, called the rear, and deleted from the other end, call...
	5. A tree consists of a finite set of elements, called nodes (or vertices), and a finite set of directed lines, called arcs, tha...
	7. A graph is an ADT made of a set of nodes, called vertices, and set of lines connecting the vertices, called edges or arcs. Gr...
	9. General linear lists are used in situations where the elements are accessed randomly or sequentially. For example, in a college, a linear list can be used to store information about the students who are enrolled in each semester.

	Multiple-Choice Questions
	11. b
	13. b
	15. d
	17. a
	19. c
	21. b
	23. a
	25. b

	Exercises
	27.
	29.
	31. Algorithm S12.31 shows the pseudocode.
	33.
	35.
	37. Algorithm S12.37 shows the pseudocode.
	Algorithm S12.37 Exercise 37
	39. The preorder traversal JCBADEFIGH tells us that node J is the root. The inorder traversal ABCEDFJGIH implies that nodes ABCE...
	Figure S11.39 Exercise 39

	41. The postorder traversal GFDABEC tells us that node C is the root. The inorder traversal ABDCEFG tell us that nodes ABD (in t...
	Figure S11.41

	43. Algorithm S12.43 shows the pseudocode.

	Algorithm S12.43 Exercise 43
	45. Algorithm S12.45 shows the pseudocode.

	Algorithm S12.45 Exercise 45
	47. Algorithm S12.47 shows the pseudocode.

	Algorithm S12.47 Exercise 47

