CHAPTER 17

Theory of Computation

(Solutions to Odd-Numbered Problems)

Review Questions

- 1. The three statements in our Simple Language are the *increment statement, decrement statement*, and *loop statement*. The increment statement adds 1 to the variable; the decrement statement subtracts 1 from the variable; the loop statement repeats an action (or a series of actions) while the value of the variable is not zero.
- 3. A problem that can be solved by our Simple Language can also be solved by the Turing machine.
- 5. One way to delimit the data on a Turing machine tape is the use of two blanks, one at the beginning of the data and one at the end of the data.
- 7. A transition state diagram is a pictorial representation of a program written for the Turing machine.
- 9. A Gödel number is an unsigned integer that is assigned to every program that can be written in a specific language. In the halting program, we represent a program as its Gödel number when that program is the input to another program.

Multiple-Choice Questions

11. a	13. b	15. a	17. c	19. d	21. c
23. c	25. c	27. d			

Exercises

29. See Algorithm S17.29. After assigning Y to Z, we increment Z (X times).

Algorithm S17.29 Exercise 29

Temp ← X	// See solution to Exercise 28				
$\mathbf{Z} \leftarrow \mathbf{Y}$	// See solution to Exercise 28				
while (Temp)					
{					
decr (Temp)					
incr (Z)					
}					

31. See Algorithm S17.31.

Algorithm S17.31 Exercise 31

Temp ← X	// See solution to Exercise 28			
$Z \leftarrow 1$				
while (Temp)				
{				
decr (Temp)				
$\mathbf{Z} \leftarrow \mathbf{Z} imes \mathbf{Y}$	// See algorithm 17.8 in the text			
}				

33. See Algorithm S17.33.

Algorithm S17.33 Exercise 33

35. The tape moves to the right and goes to state B as shown below:

37. Figure S17.37 shows the state diagram.

39.

		\downarrow			
Start	b	b	b	b	 State: S ₁
	$\mathbf{X} = 0$				
			\downarrow		
(S_1, b, b, R, S_2)	b	b	b	b	 State: S ₂
	$\mathbf{X} = 0$				
			\downarrow		
(S ₂ , b, b, N, S ₃)	b	b	b	b	 State: S ₃ (halt)
	$\mathbf{X} = 0$				

41.

- a. $(S_1, b, b, R, S_2) S_1$ is the *starting* state.
- b. $(S_2, 1, 1, R, S_2) S_2$ is the *move right* state.
- **c.** (S₂, b, b, L, S₃)
- d. $(S_3, 1, b, L, S_3) S_3$ is the *move left* state. 1 is changed to b.
- e. $(S_3, b, b, N, S_4) S_4$ is the *halt* state.
- 43. We use a single 1 to represent 0, two 1's to represent 1, three 1's to represent 2, ..., and n + 1 1's to represent n.
- 45. Algorithm S17.45 shows the statements for the macro and the Gödel number for each statement.

Algorithm S17.45 Exercise 45

$X_2 \leftarrow 0$	// Gödel Number: CF2DBF2E
incr X ₂	// Gödel Number: AF2
incr X ₂	// Gödel Number: AF2

The Gödel number for the macro is then $(CF2DBF2EAF2AF2)_{16}$. Notice that this micro does not preserve the value of X_2 . The Gödel number for the macro will be longer if we want to preserve X_2 .