CHAPTER 17

Theory of Computation

(Solutions to Odd-Numbered Problems)

Review Questions

1. The three statements in our Simple Language are the increment statement, decrement statement, and loop statement. The increment statement adds 1 to the variable; the decrement statement subtracts 1 from the variable; the loop statement repeats an action (or a series of actions) while the value of the variable is not zero.
2. A problem that can be solved by our Simple Language can also be solved by the Turing machine.
3. One way to delimit the data on a Turing machine tape is the use of two blanks, one at the beginning of the data and one at the end of the data.
4. A transition state diagram is a pictorial representation of a program written for the Turing machine.
5. A Gödel number is an unsigned integer that is assigned to every program that can be written in a specific language. In the halting program, we represent a program as its Gödel number when that program is the input to another program.

Multiple-Choice Questions

11. a
12. b
13. a
14. с
15. d
16. c
17. c
18. с
19. d

Exercises

29. See Algorithm S17.29. After assigning Y to Z, we increment Z (X times).

Algorithm S17.29 Exercise 29

```
Temp & X // See solution to Exercise 28
Z \leftarrow Y // See solution to Exercise 28
while (Temp)
{
    decr (Temp)
    incr (Z)
}
```

31. See Algorithm S17.31.

Algorithm S17.31 Exercise 31

```
Temp \leftarrowX // See solution to Exercise 28
Z}\leftarrow\mathbf{1
while (Temp)
{
    decr (Temp)
    Z}\leftarrow\mathbf{Z}\times\mathbf{Y}\quad// See algorithm 17.8 in the tex
}
```

33. See Algorithm S17.33.

Algorithm S17.33 Exercise 33

```
Temp \leftarrow X + 1
while (X)
{
    decr (X)
    A
        Temp }\leftarrow\mathbf{0
}
while (Temp)
{
    decr (Temp)
    A2
}
```

35. The tape moves to the right and goes to state B as shown below:

36. Figure S17.37 shows the state diagram.

37.

41.
a. $\left(S_{1}, b, b, R, S_{2}\right)-S_{1}$ is the starting state.
b. $\left(S_{2}, 1,1, R, S_{2}\right)-S_{2}$ is the move right state.
c. $\left(S_{2}, b, b, L, S_{3}\right)$
d. $\left(S_{3}, 1, b, L, S_{3}\right)-S_{3}$ is the move left state. 1 is changed to b.
e. $\left(S_{3}, b, b, N, S_{4}\right)-S_{4}$ is the halt state.
43. We use a single 1 to represent 0 , two 1 's to represent 1 , three 1 's to represent $2, \ldots$, and $n+11$'s to represent n.
45. Algorithm S17.45 shows the statements for the macro and the Gödel number for each statement.

Algorithm S17.45 Exercise 45

$\mathrm{X}_{2} \leftarrow \mathbf{0}$	// Gödel Number: CF2DBF2E
incr \mathbf{X}_{2}	// Gödel Number: AF2
incr \mathbf{X}_{2}	// Gödel Number: AF2

The Gödel number for the macro is then (CF2DBF2EAF2AF2) ${ }_{16}$. Notice that this micro does not preserve the value of X_{2}. The Gödel number for the macro will be longer if we want to preserve X_{2}.

