
1

CHAPTER 14

Additional ASP.NET Features

INTRODUCTION

In this chapter we look at a number of features of ASP.NET that might be considered advanced,
but can nonetheless be very useful. These features include managing image data in a web appli-
cation (including storing images in a database), caching, transaction management, and web parts.
The fi rst part of the chapter uses an example feature from a web application, uploading digital
 images, and uses this feature to explore different strategies for managing image data. In the
second part of the chapter, the ASP.NET WebPart controls are covered, and an example page
developed to illustrate how easily a simple web portal can be created by making use of their rich
feature set. We also create another ASP.NET web user control to include in the portal.

 14.1 Managing image data in a web application

In this section we will develop some web application components to upload and display
digital images or photographs. Key decisions involved in this development include whether
to store the images in the fi le system, or in a database, and how to format them for display.
The application gives an opportunity to explore ASP.NET database access in more detail,
and illustrate the use of database transactions and binary (BLOB) fi elds. We then explore
the mechanisms provided by ASP.NET for caching web pages and data in order to boost
performance.

LEARNING OBJECTIVES

To be able to upload image data to a web application ●

To be able to manage image data in a database ●

To be able to use database transactions ●

To be able to use web parts to create a portal-style web application ●

2 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 NOTE

Some of the examples in this chapter do not function correctly using
Visual Web Developer’s internal web browser. If you notice any prob-
lems, you are advised to test the pages instead using the ‘File’ →
‘Browse With . . . ’ command and then selecting Internet Explorer as
the browser to use.

 14.1.1 The image upload example

A common feature of many websites is the ability to post and share digital images or pho-
tographs. Indeed, this is one of the ‘killer applications’ driving the growth of Web 2.0 sites
such as Facebook. Whereas email, forums and web blogs allow users to communicate and
share information in textual form, media sharing seems to be more effective in attracting
a larger community. Popular digital media include music, still images and video. Each of
these has its own issues and concerns, not just technical ones but also a range of legal and
social considerations. From a technical perspective, the problems include how to store
what are often rather large fi les, and how to index them to support effective and effi cient
retrieval. Legal and social issues include copyright and privacy.

The insurance company we are considering might have two main business reasons for includ-
ing images or videos on its website: fi rstly to host adverts or promotional material, and sec-
ondly to allow policy holders to augment the claims they submit. We have already covered
the ASP.NET FileUpload control in Chapter 8, which allows you to upload fi les to a folder,
so in this chapter we further develop the scenario here in the context of WebHomeCover
user stories, whereby claimants can upload digital photographs in support of their claim.
There are two main user stories involved: fi rstly the upload itself, and secondly a facility
whereby claim processing staff can view the uploaded images associated with a specifi c
claim. In addition, media sharing sites also need to include some house-keeping operations,
but we do not consider those here. Indeed, for this application, it is likely the insurance
company will choose to retain the submitted images for an extended period, and possibly
permanently. Image retention allows the company to go back and review claims for audit-
ing purposes (auditing is an important aspect of any business, of course). Other aspects of
house-keeping include managing the storage required and the need for regular and adequate
back-ups. As indicated above, however, we are not covering those operations here.

Instead our concern is the two use case features described in Table 14.1.

We have considered in earlier chapters how to manage users, allow them to log in, and nav-
igate to a web page having selected policy and claim IDs from a drop down list. The focus
here will therefore be on implementing two web forms, one for upload, and the other to
view the uploaded images.

 14.1.2 Image Upload

This section deals with the image upload page.

The main design decision we must consider is where to store the images. There are three
obvious approaches: 1) store them in the fi le system, 2) in the database, or 3) a hybrid

14

14.1 MANAGING IMAGE DATA IN A WEB APPLICATION 3

approach in which the images are stored in the fi le system, but their URLs and other asso-
ciated information are stored in the database.

The fi rst approach is deceptively simple. We have already shown how image fi les can be
uploaded directly, and only a modest amount of code is required. However, in this use case,
we also require a title and description to be supplied and stored. It is possible to fi nd a work-
around such as incorporating them into the fi le name in some ingenious way, or to store them
in some other fi le, possibly in XML format, with the same name as the image, but a differ-
ent fi le extension, for example, ‘image123.jpg’ and ‘image123.xml’. Either approach requires
additional programming, so there is now little reason not to use a database. One advantage
of using a database is that it supports pre-programmed and ad hoc queries. If we want to
discover whether users in a certain part of the country are more likely to upload images, this
only takes a few lines of SQL if we are using a database. If the images and associated meta-
data are all stored in the fi le system, however, rather more code is required for this or any
other ad hoc query. A fi nal disadvantage is that in this approach the user uploading the image
typically has fairly direct access to the web server’s fi le store, a potential security hazard. For
example, can they see or over-write any critical fi les, or images from other users?

The second approach would be to store both the images and their associated metadata in our
database somehow. This would require an additional table or tables to be defi ned. Storing
images directly in a database requires the use of a blob (Binary Large OBject) or similar
column. Modern databases such as SQL Server have good support for blobs, but additional
programming is required to insert and retrieve them. For example, to display an image
fi le directly from a database requires additional code both to extract the binary data from
the database and also to return it to the web browser, typically using the Response.BinaryWrite
method. Table 14.2 lists some of the advantages and disadvantages of these approaches.

As you can see, there are many advantages in storing the image fi les directly in the database,
but some disadvantages also. In particular, we need to consider carefully whether it is best to
allocate the additional storage in the database or web server. In addition, careful analysis is
needed to understand the potential impact on traffi c between the web and database servers.

The third or hybrid solution attempts to combine the advantages of the two approaches
by storing the image fi les in the web server fi le system and the associated metadata such as
title and description in the database, together with the image fi lename or URL. With this

 TABLE 14.1 Use cases for Image Upload and View

Upload Image View Images

Pre-requisite: a valid policy and claim Pre-requisite: claim has images to view

User logs in and selects an open claim
User clicks to agree disclaimer
User supplies fi le name, title and description for
image fi le
User uploads photograph

Employee logs in
Employee selects policy and claim ID

Post-condition: image URL is in database Post-condition: All associated images are
displayed, together with their title and description

4 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

approach, traffi c between the database and web servers is minimized, but it is still possible
to obtain some of the benefi ts of the previous approach such as the ability to write ad hoc
queries in SQL, and images can be managed by fi le-oriented utilities. The hybrid approach
leaves unresolved the issues of referential integrity and transactional updates, however.

Balancing the benefi ts and disadvantages, it seems the third approach has a modest advan-
tage over the second one in our case.

It is also worth considering the disclaimer text which the policy holders must agree to before
they upload an image to the insurance company website. Obviously, they must consent to
the company using the image for business purposes such as processing the claim and audit-
ing. By doing so, the policy holder should agree that they will not undertake any copyright
claim or charge against the company. Of course, this requires that the policy holder war-
rants that they are the ones who own the image, and that the image does not contain any
obscene or illegal material. Clearly, the legal department must write the disclaimer to ensure
it serves the required purpose and is legally binding. As web developers, our responsibility is
to ensure the user reads the disclaimer, or more realistically that they click a button to agree
that they have read the disclaimer and agree to be bound to it. As disclaimers are often
quite long, it is increasingly common to include a hyperlink rather than the disclaimer itself.
Occasionally sites monitor the user to ensure they actually follow this link before they are
allowed to agree to the terms and conditions, although this can be annoying for some users.

 14.1.3 Image upload

Before this solution can be implemented, a new database table is required to store the
image IDs and metadata. For simplicity, each image will have a fi le name such as 1.jpg,
2.jpg, and so on (it would be a relatively simple matter to allow different types of image
fi le by storing this as an additional fi eld in the database). The image fi les are also located

 TABLE 14.2 Comparing storing images in the database and storing images
in the fi le system

Storing Images in the Database Storing Images in the File System

Can only be managed by database
administration software

Can be managed by fi le-system oriented utilities

Easy to code ad hoc queries using SQL Ad hoc queries are more diffi cult to code

Database can manage referential integrity External utilities required for image fi le house-
keeping

Image upload can be included in an ACID
(Atomic, Consistent, Isolated, Durable)
database transaction

Transactional updates require additional
programming

Standard security considerations only Allowing users write access to the web server
fi le system may create additional security issues

Database tables may become very large Need to manage web server fi le space

Increases the traffi c sent from the database
server to the web server

Image fi les are not sent between the web server
and database servers

14

in a single directory which the web server has write access to. Thus the fi le names on the
server are likely to be different from the ones the user has chosen. This avoids the poten-
tial security hazard of attempting to access a fi le whose name the user has specifi ed, and
the need to check their input for special characters.

As you can see in Figure 14.1, the ‘imageID’ is specifi ed as a database identity fi eld, with
automatically generated values, starting from 1 and incrementing by one each time a new
image is uploaded. The title and description are simple strings, and the ‘claimID’ is a for-
eign key relating the image to the relevant claim.

Once the table has been created, an image upload web form can be built and tested, as
shown in Figure 14.2. This form is a variant of the fi le upload page described in Chapter 7.
In addition to the fi le name, it also includes fi elds whereby the claim reference, title and
description can be entered. There are also a hyperlink and check box for the terms and
conditions, as described above. The fi le upload browse dialog can be used to select the
required image fi le, and the Upload button is used to submit the selected image fi le. In
the screen shot below, assume that the user has clicked on the hyperlink, read the terms
and conditions, clicked on the check box to agree to them, typed in the required informa-
tion and selected an image fi le for upload.

The code behind this web form validates the input and handles the fi le upload, recording
the metadata in the database. First is the C# code:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Confi guration;
using System.Data;
using System.Data.SqlClient;
using System.Linq;

 FIGURE 14.1 Defi ning the new image table in the database. The imageID
is an automatically incremented identity fi eld

14.1 MANAGING IMAGE DATA IN A WEB APPLICATION 5

6 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public partial class ImageUpload : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack && FileUpload1.HasFile && CheckBox1.Checked)
 {
 System.Confi guration.Confi guration rootWebConfi g =
System.Web.Confi guration.WebConfi gurationManager.OpenWebConfi guration
(“~/Final”);
 String myConnString =
rootWebConfi g.ConnectionStrings.ConnectionStrings[“ConnectionString”]
.ToString();
 SqlConnection myConn = new SqlConnection(myConnString);
 myConn.Open();
 SqlCommand myQuery = new SqlCommand
 (“SELECT claimID FROM claim WHERE reference=@reference”, myConn);
 myQuery.Parameters.AddWithValue(“@reference”, TextBox1.Text);
 SqlDataReader myDR;
 myDR = myQuery.ExecuteReader();
 if (!myDR.Read())
 {
 Label1.Text = “Invalid claim reference”;
 return;
 }
 int claimID = myDR.GetInt32(0);
 myDR.Close();
 SqlCommand myInsert = new SqlCommand(“INSERT INTO image
 VALUES(@title,@description,@claimID)”, myConn);
 myInsert.Parameters.AddWithValue(“@title”, TextBox2.Text);
 myInsert.Parameters.AddWithValue(“@description”, TextBox3.Text);
 myInsert.Parameters.AddWithValue(“@claimID”, claimID);
 int rows = myInsert.ExecuteNonQuery();
 if (rows != 1)
 throw new Exception(“Unexpected Result for Insert”);
 SqlCommand myCount = new SqlCommand
 (“SELECT MAX(imageID) AS IMAGEID FROM image”, myConn);
 myDR = myCount.ExecuteReader();
 myDR.Read();
 int imageID = myDR.GetInt32(0);
 myDR.Close();
 String path = Server.MapPath(“~/Uploads/”);
 try
 {
 FileUpload1.PostedFile.SaveAs

14

 (path + imageID.ToString() + “.jpg”);
 Label1.Text = “Upload successful”;
 }
 catch(Exception myEx)
 {
 Label1.Text = “Upload failed”;
 }
 }
 }
}

Next is the Visual Basic code:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls

Partial Class ImageUpload Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As EventArgs)
 If IsPostBack = True And FileUpload1.HasFile = True And _
 CheckBox1.Checked = True Then
 Dim rootWebConfi g As System.Confi guration.Confi guration = _
 System.Web.Confi guration.WebConfi gurationManager.
 OpenWebConfi guration(“~/Final”)
 Dim myConnString As String = _
 rootWebConfi g.ConnectionStrings.
 ConnectionStrings(“ConnectionString”).ToString()
 Dim myConn As SqlConnection = New SqlConnection(myConnString)
 myConn.Open()
 Dim myQuery As SqlCommand = New SqlCommand(“SELECT claimID _
 FROM claim WHERE reference=@reference”, myConn) _
 myQuery.Parameters.AddWithValue(“@reference”, _
 TextBox1.Text)
 Dim myDr As SqlDataReader
 myDr = myQuery.ExecuteReader()
 If myDr.Read() = False Then
 Label1.Text = “Invalid claim reference”
 Return
 End If
 Dim claimID As Integer = myDr.GetInt32(0)
 myDr.Close()
 Dim myInsert As SqlCommand = New SqlCommand(“INSERT INTO _
 image VALUES(@title,@description,@claimID)”, myConn)
 myInsert.Parameters.AddWithValue(“@title”, TextBox2.Text)
 myInsert.Parameters.AddWithValue(“@description”, _
 TextBox3.Text)
 myInsert.Parameters.AddWithValue(“@claimID”, claimID)
 Dim rows As Integer = myInsert.ExecuteNonQuery()

14.1 MANAGING IMAGE DATA IN A WEB APPLICATION 7

8 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 If rows <> 1 Then
 Throw New Exception(“Unexpected Result for Insert”)
 End If
 Dim myCount As SqlCommand = New SqlCommand(“SELECT _
 MAX(imageID) AS IMAGEID FROM image”, myConn)
 myDr = myCount.ExecuteReader()
 myDr.Read()
 Dim imageID As Integer = myDr.GetInt32(0)
 myDr.Close()
 Dim path As String = Server.MapPath(“~/Uploads/”)
 Try
 FileUpload1.PostedFile.SaveAs(path + imageID.ToString() _
 + “.jpg”)
 Label1.Text = “Upload successful”
 Catch myEx As Exception
 Label1.Text = “Upload failed”
 End Try
 End If
 End Sub
End Class

This code uses a connection string which must be defi ned in the application’s web.confi g fi le
using a ‘connectionStrings’ element similar to the following (as seen in Chapter 11):

<connectionStrings>
 <add name=”ConnectionString”
 connectionString=”DataSource=.\SQLEXPRESS;AttachDbFilename=
 |DataDirectory|\Database.mdf;
 Integrated Security=True;User Instance=True”
 providerName=”System.Data.SqlClient”/>
</connectionStrings>

The claim reference supplied by the user is validated before the data is inserted into the data-
base. The new image ID is retrieved, and used as the fi le name to create the uploaded fi le.

A few comments can be made on this code. Although it is already a page or so in length,
error handling is somewhat rudimentary. More feedback to the user is required if the upload
fails, or indeed if it does not even start because they have failed to check the required check
box. More seriously, the code is not transactional. It is possible that the claim could for
some reason be deleted just after its reference has been validated; or that the image ID
retrieved might in fact belong to some other image being uploaded ‘at the same time’. To
avoid these potential problems, ACID database transactions should be used, as explored
later in this chapter.

 14.1.4 Viewing the images

In this application, it is assumed the user, an authorized insurance company employee,
wishes to view all images associated with a single claim. It is also assumed that the number
of such images will be relatively small, from perhaps only one up to a couple of dozen at
most. Identifying the images to retrieve is as simple as typing in the claim reference, or

14

selecting it from a drop down list as in Chapter 10. There is no need in this case to provide
a means of navigating around and selecting from the large number of images you might
fi nd in a typical photo-sharing application, typically using scaled down thumbnails of the
original images.

The main issues therefore concern the layout of the images. A common approach is to use
a table with one of more columns, and fi xed size cells. This has the advantage of provid-
ing a regular layout. It is diffi cult to know, however, how many columns to use. The opti-
mal number depends on the width of the actual images, and the window used to display
them. Both these quantities can vary, so it is not possible to determine the correct answer
in advance. Instead, the calculation should be done at run-time, and preferably by the
browser, as this has access to the current window geometry. This effect can be achieved by
making each image a left-fl oating element so that as many images as can fi t are displayed on
each line before the next one is started.

This effect can be achieved with a stylesheet such as the one in Figure 14.3 on the
following page.

To make use of this stylesheet, our images must be displayed using a list rather than a table.
To do this, we need to make use of a different data control than the ones we have seen so
far, all of which output HTML tables. Instead, we can use the ListView control, which was
introduced in ASP.NET 3.5 to provide a more fl exible and precisely defi ned output. The
.aspx fi le shown below indicates how this control can be used.

In this web form there are two controls, an SqlDataSource which retrieves the records asso-
ciated with a specifi c claim from the database, and a ListView control which displays the

14.1 MANAGING IMAGE DATA IN A WEB APPLICATION 9

 FIGURE 14.2 The Image Upload web form viewed in a browser

10 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

data retrieved by the fi rst control. The ListView consists of a number of templates each of
which can be defi ned graphically or, as here, using ASP.NET mark-up. The Empty DataTem-
plate defi nes what is to be displayed when the data source fi nds no records to return. Oth-
erwise, the LayoutTemplate defi nes the mark-up to be generated at the start and end of the
displaying the selected records. In this case, our LayoutTemplate consists of an unordered
list matching the CSS class defi ned above. Inside the list is a placeholder control:

 <asp:PlaceHolder ID=”itemPlaceholder” runat=”server”/>

At run-time, this control is replaced by the ItemTemplate control which, as you can see
below, consists of an HTML list item (‘li’) element containing two labels, one for the title
and one for the description, and an ‘asp:image’ control to display the uploaded images one
at a time.

Some comments on this mark-up are in order. Firstly, note the use of the data binding
syntax:

Text=’<%# Eval(“title”) %>’

We have seen this syntax before when editing data control templates, but not entered
it directly ourselves. At run-time the data-binding text is replaced by the correspond-
ingly named fi eld from the current database record. Note also the alternative form of
the data-binding syntax in which a format specifi er {0} is used to indicate where the
database fi eld is to be inserted. Secondly, note the images have specifi ed widths and
heights. In practice, any fi xed width and height is unlikely to be appropriate for the
given set of images, of course. Finally, note that the template mechanism described
here is flexible enough to allow ListView controls to output lists, tables, or other
HTML structures.

In addition to the templates described here, the ListView control moreover supports others
which are used when the data is to be edited, which requires that two-way data binding is used:

<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head runat=”server”>

 FIGURE 14.3 A CSS stylesheet which specifi es that list items are fl oated in-line with
a 15 pixel gap to the left and below

14

 <title>Untitled Page</title>
 <link type=”text/css” rel=”stylesheet” href=”StyleSheet.css”>
 </head>
 <body>
 <form id=”form1” runat=”server”>
 <h1>Images For Selected Claim</h1>
 <p>
 <asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
 ConnectionString=”<%$ ConnectionStrings:ConnectionString %>”
 SelectCommand=”SELECT [imageID], [title], [description]
 FROM [image] WHERE ([claimID] = @claimID)”>
 <SelectParameters>
 <asp:QueryStringParameter
 Name=”claimID” QueryStringField=”claimID” Type=”Int32” />
 </SelectParameters>
 </asp:SqlDataSource>
 </p>
 <p>
 <asp:ListView ID=”ListView1” runat=”server”
 DataKeyNames=”imageID”
 DataSourceID=”SqlDataSource1”>
 <EmptyDataTemplate>
 <p>No images found</p>
 </EmptyDataTemplate>
 <LayoutTemplate>
 <ul class=”mylist”>
 <asp:PlaceHolder ID=”itemPlaceholder” runat=”server”/>

 </LayoutTemplate>
 <ItemTemplate>

 <asp:Label ID=”titleLabel” runat=”server”
 Text=’<%# Eval(“title”) %>’ />:
 <asp:Label ID=”descriptionLabel” runat=”server”
 Text=’<%# Eval(“description”) %>’ />

 <asp:Image ID=”Image1” runat=”server” Width=200px Height=200px
 ImageUrl=’<%# Eval(“imageID”, “~/Uploads/{0}.jpg”) %>’ />

 </ItemTemplate>
 </asp:ListView>
 </p>
 </form>
 </body>
</html>

The screen shots in Figure 14.4 show this web form in operation. Note the way that the
number of images on each line varies as the window is re-sized: as the window is widened,
the page shows fi rst one, then two, images per row, and so on.

14.1 MANAGING IMAGE DATA IN A WEB APPLICATION 11

12 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 14.2 Image database storage and transactions

Having considered the hybrid solution, it is now time to look at solution two, in which the
images themselves are stored, together with their associated metadata, in the database itself.
In this section, we create variants called ImageUpload2.aspx and ImageView2.aspx of the

 FIGURE 14.4 This image gallery uses fl oating elements to fi t as many images as
possible on one line

(a)

(b)

14

14.2 IMAGE DATABASE STORAGE AND TRANSACTIONS 13

original web forms (ImageUpload.aspx and ImageView.aspx). In addition, a new image table
must be defi ned in the database, which we will call image2. This will have the same fi elds as
the original image table, but with one additional fi eld, called ‘image’, of type varbinary(MAX).

The web form for uploading an image does not need to change, but the code behind
(ImageUpload2.aspx.cs) is now rather different, as shown below, fi rst in C#:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Confi guration;
using System.Data;
using System.Data.SqlClient;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public partial class ImageUpload : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (IsPostBack && FileUpload1.HasFile && CheckBox1.Checked)
 {
 System.Confi guration.Confi guration rootWebConfi g =
System.Web.Confi guration.WebConfi gurationManager.OpenWebConfi guration
(“~/Final”);
 String myConnString =
rootWebConfi g.ConnectionStrings.ConnectionStrings[“ConnectionString”]
.ToString();
 SqlConnection myConn = new SqlConnection(myConnString);
 myConn.Open();
 SqlTransaction myTrans = myConn.BeginTransaction();
 try
 {
 SqlCommand myQuery = new SqlCommand
 (“SELECT claimID FROM claim WHERE reference=@reference”,
 myConn);
 myQuery.Transaction = myTrans;
 myQuery.Parameters.AddWithValue(“@reference”, TextBox1.Text);
 SqlDataReader myDR;
 myDR = myQuery.ExecuteReader();
 if (!myDR.Read())
 {
 Label1.Text = “Invalid claim reference”;
 return;
 }
 int claimID = myDR.GetInt32(0);

14 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 myDR.Close();
 Byte[] imageBytes = new
Byte[FileUpload1.PostedFile.InputStream.Length];
 FileUpload1.PostedFile.InputStream.Read(imageBytes, 0,
imageBytes.Length);
 SqlCommand myInsert = new SqlCommand
 (“INSERT INTO image2
 VALUES(@title,@description,@claimID,@image)”,
 myConn);
 myInsert.Transaction = myTrans;
 myInsert.Parameters.AddWithValue(“@title”, TextBox2.Text);
 myInsert.Parameters.AddWithValue(“@description”, TextBox3.Text);
 myInsert.Parameters.AddWithValue(“@claimID”, claimID);
 myInsert.Parameters.AddWithValue(“@image”, imageBytes);
 int rows = myInsert.ExecuteNonQuery();
 if (rows != 1) throw new Exception(“Unexpected Result for
Insert”);
 myTrans.Commit();
 TextBox1.Text = “”;
 TextBox2.Text = “”;
 TextBox3.Text = “”;
 }
 catch (Exception myEx)
 {
 myTrans.Rollback();
 }
 }
 }
}

The equivalent VB code is as follows:

Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.UI
Imports System.Web.UI.HtmlControls
Imports System.Web.UI.WebControls

Partial Class ImageUpload2 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object,
 ByVal e As EventArgs)
 If IsPostBack = True And FileUpload1.HasFile = True And _
 CheckBox1.Checked = True Then
 Dim rootWebConfi g As System.Confi guration.Confi guration = _
 System.Web.Confi guration.WebConfi gurationManager.
 OpenWebConfi guration(“~/Final”)

 Dim myConnString As String = _
 rootWebConfi g.ConnectionStrings.
 ConnectionStrings(“ConnectionString”).ToString()

 Dim myConn As SqlConnection = New SqlConnection(myConnString)
 myConn.Open()

14

 Dim myTrans As SqlTransaction = myConn.BeginTransaction()

 Try
 Dim myQuery As SqlCommand = New SqlCommand(“SELECT claimID _
 FROM claim WHERE reference=@reference”, myConn)
 myQuery.Transaction = myTrans
 myQuery.Parameters.AddWithValue(“@reference”, TextBox1.Text)
 Dim myDR As SqlDataReader
 myDR = myQuery.ExecuteReader()
 If myDR.Read() = False Then
 Label1.Text = “Invalid claim reference”
 Return
 End If
 Dim claimID As Integer = myDR.GetInt32(0)
 myDR.Close()
 Dim imageBytes As Byte()
 ReDim imageBytes(FileUpload1.PostedFile.InputStream.Length)
 FileUpload1.PostedFile.InputStream.Read(imageBytes, 0, _
 FileUpload1.PostedFile.InputStream.Length)
 Dim myInsert As SqlCommand = New SqlCommand(“INSERT INTO _
 image2 VALUES(@title,@description,@claimID,@image)”, _
 myConn)
 myInsert.Transaction = myTrans
 myInsert.Parameters.AddWithValue(“@title”, TextBox2.Text)
 myInsert.Parameters.AddWithValue(“@description”, _
 TextBox3.Text)
 myInsert.Parameters.AddWithValue(“@claimID”, claimID)
 myInsert.Parameters.AddWithValue(“@image”, imageBytes)
 Dim rows As Integer = myInsert.ExecuteNonQuery()
 If rows <> 1 Then
 Throw New Exception(“Unexpected Result for Insert”)
 End If
 myTrans.Commit()

 Label1.Text = “”
 TextBox1.Text = “”
 TextBox2.Text = “”
 TextBox3.Text = “”

 Catch myEx As Exception
 Label1.Text = myEx.Message
 myTrans.Rollback()
 End Try
 End If
 End Sub
End Class

Here an ACID database transaction is begun once the database connection has been
opened. This transaction is used to ensure that the SQL query used to validate the claim
reference is synchronized with the SQL command used to insert the image into the data-
base. This guards against the (admittedly somewhat unlikely) situation where the claim
is deleted after it has been validated but before the image is inserted. If all goes well, the

14.2 IMAGE DATABASE STORAGE AND TRANSACTIONS 15

16 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

transaction is committed at the end of the normal fl ow of events. Alternatively, if there
are any errors, the transaction is rolled back, leaving the database unchanged. As you can
see, it only takes a few extra lines of code to make use of this powerful database facility.

The code to insert the image into the database is somewhat different from the code to save
it to the fi le system, but hopefully self-explanatory.

Finally, if all goes well, the textboxes are cleared so that the user can, if they wish, enter
new data and insert another image into the database. The check box is not cleared as it is
only necessary for the user to read the disclaimer once.

 14.2.1 Solution Two: Image View

With the images stored in the database, we need to change the different forms and code
used to view the images. This is now more complex to implement. The ‘img’ element used
in XHTML to display images expects them to be identifi ed by a URL, but in our system
the images are in fact identifi ed by an imageID, which is an identity fi eld in our image2
database table. How may we reconcile these two rather different notions of identity?

The solution is create another web form, ShowImage.aspx say, which will display the image
whose integer ID is passed to it via the query string. Now image 3, for example, can be
displayed using the URL ShowImage.aspx?imageID=3, and so on.

The ShowImage.aspx page has no XHTML mark-up, but just an ASP.NET header:

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”ShowImage.aspx.cs”
 Inherits=”ShowImage” %>

The code behind fi le, ShowImage.aspx.cs, does all the work. Here is the C# code:

using System;
using System.Collections;
using System.Collections.Specialized;
using System.Confi guration;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Linq;

public partial class ShowImage : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {

14

 System.Confi guration.Confi guration rootWebConfi g =
System.Web.Confi guration.WebConfi gurationManager.OpenWebConfi guration
(“~/Final”);
 String myConnString =
rootWebConfi g.ConnectionStrings.ConnectionStrings[“ConnectionString”]
.ToString();
 SqlConnection myConn = new SqlConnection(myConnString);
 myConn.Open();
 SqlCommand myQuery = new SqlCommand(“SELECT image FROM image2 WHERE
 imageID=@imageID”, myConn);
 NameValueCollection myColl = Request.QueryString;
/* assumed to be imageID = n */
 string[] myVals = myColl.GetValues(0);
 int imageID = Convert.ToInt32(myVals[0]);
 myQuery.Parameters.AddWithValue(“@imageID”, imageID);
 Response.ContentType = “image/jpeg”;
 SqlDataReader myDR = myQuery.ExecuteReader();
 myDR.Read();
 byte[] myBytes = (byte[])myDR.GetValue(0);
 Response.OutputStream.Write(myBytes,0,myBytes.Length);
 myConn.Close();
 }
}

Here is the Visual Basic code:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)
 Dim rootWebConfi g As System.Confi guration.Confi guration = _
 System.Web.Confi guration.WebConfi gurationManager.
 OpenWebConfi guration(“~/Final”)
 Dim myConnString As String = _
 rootWebConfi g.ConnectionStrings.
 ConnectionStrings(“ConnectionString”).ToString()

 Dim myConn As SqlConnection = New SqlConnection(myConnString)
 myConn.Open()

 Dim myQuery As SqlCommand = New SqlCommand(“SELECT image FROM _
 image2 WHERE imageID=@imageID”, myConn)

 Dim myColl As NameValueCollection = Request.QueryString
‘ assumed to be imageID = n
 Dim myVals As String() = myColl.GetValues(0)
 Dim imageID As Integer = Convert.ToInt32(myVals(0))
 myQuery.Parameters.AddWithValue(“@imageID”, imageID)
 Response.ContentType = “image/jpeg”
 Dim myDR As SqlDataReader = myQuery.ExecuteReader()
 myDR.Read()
 Dim myBytes As Byte() = CType(myDR.GetValue(0), Byte())
 Response.OutputStream.Write(myBytes, 0, myBytes.Length)
 myConn.Close()
End Sub

14.2 IMAGE DATABASE STORAGE AND TRANSACTIONS 17

18 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

The database is connected to as usual, and the image retrieved using an SQL query such
as the ones we have seen before. Now, however, the data being retrieved is in binary for-
mat, so a byte array (or other similar structure) is the best way to store it. Finally, the data
is written to the HTTP response, whose content type is set to be a JPEG image (‘image/
jpeg’). The OutputStream.Write() method is used here to provide binary output.

Note that this form does not function correctly using Visual Web Developer’s internal
browser, but works happily with external browsers such as Internet Explorer.

Only modest changes are needed to convert the original ImageView.aspx into the required
ImageView2.aspx form. The Image control used in the ListView control is easily changed
to make use of these URLs for displaying images directly from our image2 database table.
That is to say, the original line:

<asp:Image ID=”Image1” runat=”server” Width=200px Height=200px
 ImageUrl=’<%# Eval(“imageID”, “~/Uploads/{0}.jpg”) %>’ />

should be replaced with:

<asp:Image ID=”Image1” runat=”server” Width=200px Height=200px
 ImageUrl=’<%# Eval(“imageID”, “~/ShowImage.aspx?imageID={0}”) %>’
/>

And the select command must be updated to refer to the image2 table:

SelectCommand=”SELECT [imageID], [title], [description] FROM [image2]
WHERE ([claimID] = @claimID)”>

This page now functions correctly, giving similar results to those shown in Figure 14.4,
when used with Internet Explorer (rather than VWD’s internal web browser).

Note, however, that the ShowImage.aspx page is, as it stands, a security hole. By supply-
ing this arbitrary ‘imageIDs’, users can view any image in the database, hardly a desirable
situation. To close this security hole, it is necessary to make use of the user membership
database and APIs discussed in Chapter 12. For example, a check could be made that the
user is in a certain role such as claimsApprover. Alternatively, if the user has logged in as a
policy holder, they should only be able to view images relating to claims being made on one
of their own policies. This requires only a modest amount of code, but it is necessary to
wrap up the pages created in this chapter in a login system similar to the one developed in
Chapter 12. The most important lesson, however, is that ‘just adding another page’ to a safe
system can easily compromise security, so careful review is required for each such change.

Finally, it is interesting to note that SQL Server 2008 provides a hybrid solution of its own.
Binary data can be marked with the FILESTREAM attribute, which means the data item is
managed by SQL Server but actually stored in the fi le system.

 14.3 ASP.NET caching

With pages such as the ones we have just developed, it is easy to imagine that performance
could become an issue. If we have a lot of users accessing pages with multiple images and
other rich content that is pulled from the database, response times may suffer. Fortunately,

14

14.4 WEB PARTS 19

ASP.NET includes a number of features which make it quite simple for you to boost the
performance of your application using caching, a technique whereby commonly accessed
data is stored in memory rather than being fetched or re-created each time. Introducing
caching into your ASP.NET application can be as simple as adding a few extra lines of
ASP.NET mark-up to your .aspx web forms.

Once an item has been added to the cache, it remains there unless or until a) it is explicitly
removed, b) memory runs low and is needed by other items, c) the item expires, meaning
that it reaches a pre-defi ned time for removal, or d) some other item on which it depends
changes, so that the cached copy is no longer reliable.

To cache a page simply add the ‘OutputCache’ directive to the page header, for example
this directive, which declares that the page should be cached for the next ten seconds:

<%@ OutputCache Duration=”10”>

Other attributes of this directive allow you to defi ne the location of the cache, and whether
to store multiple versions of the page depending on the supplied HTTP parameters (using
the ‘VaryByParam’ attribute).

In addition to caching the whole page, you can ask ASP.NET to cache parts of a page. To
do this, you should construct the page from user controls, then include an OutputCache
directive in each user control you want to be cached. In this way, different fragments of
the page can have different caching policies applied to them. Finally, note the Label con-
trol, which displays text on a web page. This is never cached, so it can be used for person-
alized information such as the user ID, or name, or address.

In addition to the simple, code-free, approaches to caching just described, ASP.NET pro-
vides classes whose methods allow you to control application and database caching using
only a few lines of code. The Cache object allows you to Add, Insert and Remove items
from the cache. Alternatively, rather than deleting cached items using method calls, you
can specify an expiration policy, for example that the object is to be removed from the
cache fi ve minutes after being inserted, or at a specifi c time of day. Moreover, you can
declare dependencies whereby if an object changes, cached objects which depend on it
are automatically disposed of. The SqlCacheDependency class provides similar methods
and facilities which allow you to cache the results of SQL select queries.

 14.4 Web parts

The WebParts group of controls allows you to create a web portal or intranet site with only
a modest amount of coding. A number of controls are available which work together to
provide a sophisticated customizable web-based user interface. In this section we illustrate
the use of the majority of these controls by putting together a skeleton web portal based
on a table of WebPartZone controls.

Each web form that uses web parts must include a WebPartManager control, as shown in
the Design view in Figure 14.5. In our very simple example we have added a table with
two rows and two columns, and in each cell of the table have added a WebPartZone control
from the WebParts group of controls. Inside each WebPartZone, a standard Label control

20 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

has been added. To start with, the WebPartZone will show as ‘untitled’ so you should add a
‘HeaderText’ attribute to each WebPartZone and also add a ‘Title’ attribute to each Label,
which you must do in Source View, rather than Design View. In Source view, each of your
cells should have mark-up similar to the following:

<asp:WebPartZone ID=”WebPartZone1” runat=”server”
 HeaderText=”Zone 1”>
 <ZoneTemplate>
 <asp:Label ID=”Label1” runat=”server” Title=”Zone 1”
 Text=”Contents of Zone 1”>
 </asp:Label>
 </ZoneTemplate>
</asp:WebPartZone>

Viewing the page in the browser will then display the page with its table of controls as
shown in Figure 14.6. The drop down arrow at the top of each zone gives access to its
‘verbs’ menu In this case, only the ‘Minimize’ and ‘Close’ verbs are available in this menu.

The user can interact with the web parts by minimizing or restoring them using the ‘verbs’
present in the menu associated zone that contains the web part. The state of the web parts

 FIGURE 14.5 A web form with a WebPartManager control and two WebPartZone
controls

 FIGURE 14.6 The WebPartManager and WebPartZone controls viewed in a browser

14

is recorded in the personalization database, details of which were covered in Chapter 12.
If, for example, you minimize one of the zones, close down the web page, and start it up
again, you will see that it remains minimized, as shown for example in Figure 14.7.

If the user chooses to close one of the web parts, however, there is no easy way for them to
restore it. The database administrator can rectify the problem by removing the appropriate
record from the aspnet_PersonalizationPerUser table, but this is hardly a satisfactory solu-
tion. The simplest way to avoid the problem is to hide the Close verb, which can be done
in the Page_Load event hander by including assignments such as:

WebPartZone1.CloseVerb.Visible = false

The Web Parts controls include several which allow users to change the appearance and
behavior of their view of the system. To give a flavor of this in action, we will add an
EditorZone control to the bottom of the web form, and include inside this control an
AppearanceEditorPart. Finally, we will add a button below the EditorZone, with text such
as ‘Switch mode’ and a click event handler. In Design view the ASP.NET mark-up should
be similar to the following:

<asp:EditorZone ID=”EditorZone1” runat=”server”>
 <ZoneTemplate>
 <asp:AppearanceEditorPart ID=”AppearanceEditorPart1”
 runat=”server” />
 </ZoneTemplate>
</asp:EditorZone>
<asp:Button ID=”Button1” runat=”server” onclick=”Button1_Click”
 Text=”Switch Mode” />

Note that the button has a click event handler. This should be programmed to toggle
between web part display and edit modes using the following code:

protected void Button1_Click(object sender, EventArgs e)
{
 if (WebPartManager1.DisplayMode == WebPartManager.BrowseDisplayMode)
 WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode;
 else
 WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode;
}

and similarly in Visual Basic:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As EventArgs)
 If WebPartManager1.DisplayMode Is _
 WebPartManager.BrowseDisplayMode Then
 WebPartManager1.DisplayMode = _
 WebPartManager.EditDisplayMode
 Else
 WebPartManager1.DisplayMode = _
 WebPartManager.BrowseDisplayMode
 End If
End Sub

14.4 WEB PARTS 21

22 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 FIGURE 14.7 The Web Parts example with an Editor Zone

(a)

(b)

The effect of these additions is shown in Figure 14.7. This shows the page being viewed
in the browser. Clicking the Switch Mode button switches to Edit mode as shown in the
right-hand pane. Each web part zone now has an additional verb in its menu, called simply
Edit. Clicking this option brings up the appearance editor, which is shown in the fi nal
screen shot, and which allows the user to change the Title and appearance of the Zone.

In edit mode, each web part zone has an additional frame, and their zone menu now
includes an ‘Edit’ verb. Clicking this brings up the web part Editor Zone, as shown in
the screen shot, which allows the user to change the properties such as its Title. Changes
are saved in the personalization database, so they will still apply the next time the web page
is visited. A fi nal feature of EditDisplayMode is that web parts may be dragged between
zones. To see this feature in operation, you should view the page using Internet Explorer
rather than Visual Web Developer’s internal browser, then switch to Edit mode. If you now
move your mouse over a web part, you will see that the mouse point turns into a four-way
pointer, signifying that you can now drag and drop the web part. Move it across to another
web zone, and drop it there. In Figure 14.8, for example, a web part is being moved back
from zone 2 to zone 1. Note that zone 1 automatically displays the message ‘Add a Web
Part to this zone by dropping it here’ when it contains no web parts. (Internet Explorer is
used for this example rather than Visual Web Developer’s internal web browser.)

14

 FIGURE 14.8 Dragging and dropping web parts between zones
in web part Edit mode

 FIGURE 14.7 Continued

(c)

14.4 WEB PARTS 23

24 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 14.5 Extending web parts with a web user control

So far, our web parts have been rather trivial, consisting of just a label and title. A web
part can be any ASP.NET control so that you can choose to make a calendar, for example,
into a web part. This also, however, does not meet the typical expectations of a web portal
whereby the portal elements, or portlets, are expected to provide rich application-specifi c
functionality. ASP.NET allows you to defi ne your own web parts in two different ways,
either as web user controls, or as custom built web parts. In this section, we consider the
fi rst of these two alternatives, the ASP.NET web user control.

As we saw in Chapter 7, when we created a web user control to use in the side bar of the
master page, you can create a web user control using the ‘File’ → ‘New File . . .’ dialog. One of
the fi le types this dialog offers you (assuming you currently have a website open) is the Web
User Control. It is recommended you place your web user controls in their own folder or
sub-directory of your website such as MyUserControls. Each user control has a name such as
MyUserControl.ascx, and an associated code behind fi le such as MyUserControl.ascx.cs or .vb,
just like an ASP.NET web form. As with web forms, you can include any ASP.NET control, and
can set properties and add event handlers for each control in the same way. Thus, apart from
the fi le extension, there is little difference between creating an ASP.NET web user control and
a web form. As with web forms, you can edit user controls in Design view, or Source view, or a
combination of these two approaches. For example, editing a simple web user control is shown
below in Figure 14.9 immediately followed by the equivalent ASP.NET mark-up. Note that,
apart from the .ascx extension, this is almost identical to editing an ASP.NET web form.

The mark-up which you see for this control in Source view is as follows:

<%@ Control Language=”C#” AutoEventWireup=”true”
CodeFile=”MyUserControl.ascx.cs”
 Inherits=”UserControls_MyUserControl” %>
<h1>Company Information</h1>
<p>
 <asp:Image ID=”Image1” runat=”server” AlternateText=”Company Logo”
 ImageUrl=”~/UserControls/marketing.jpg” />
</p>

 FIGURE 14.9 Editing an ASP.NET web user control using Design view

14

14.5 EXTENDING WEB PARTS WITH A WEB USER CONTROL 25

As you can see, this is very similar to a web form. The main differences here are that the
Inherits clause is somewhat different, and the <asp:form> element is missing.

The great thing about web user controls is that they can be used in a web form more or less
as if they were ASP.NET web controls. To enable this, you must fi rst add a Register direc-
tive to your web form. The following directive, for example, declares that the form will
make use of the user control above, using an XHTML element of the form <abc:Logo />:

<%@ Register Tagprefi x=”abc” Tagname=”Logo”
Src=”~/UserControls/MyUserControl.ascx” %>

We can now extend our skeleton web portal by making use of the web user control we
have just created. The ASP.NET mark-up below shows how this can be accomplished.

<%@ Page Language=”C#” AutoEventWireup=”true”
CodeFile=”WebParts2.aspx.cs”
 Inherits=”WebParts2” %>
<%@ Register Tagprefi x=”abc” Tagname=”Logo”
Src=”~/UserControls/MyUserControl.ascx” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head runat=”server”>
 <title>Untitled Page</title>
 </head>
 <body>
 <form id=”form1” runat=”server”>
 <div>
 <h1>Web Parts Example</h1>
 <asp:XmlDataSource ID=”XmlDataSource1” runat=”server”
 DataFile=”Ads.xml” />
 <asp:WebPartManager ID=”WebPartManager1” runat=”server”>
 </asp:WebPartManager>
 <table>
 <tr>
 <td>
 <asp:WebPartZone ID=”WebPartZone1” runat=”server”>
 <ZoneTemplate>
 <asp:Calendar ID=”Calendar1” runat=”server”
 Title=”My Calendar” />
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 <td>
 <asp:WebPartZone ID=”WebPartZone2” runat=”server”>
 <ZoneTemplate>
 <abc:Logo ID=”Logo” runat=”server” Title=”Company Page” />
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 </tr>
 </table>

26 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 <table>
 <tr>
 <td>
 <asp:CatalogZone ID=”CatalogZone1” runat=”server”>
 <ZoneTemplate>
 <asp:PageCatalogPart id=”PageCatalogPart1” runat=”server”
 Title=”My Page Catalog”/>
 <asp:DeclarativeCatalogPart id=”DeclarativeCatalogPart1”
 runat=”server”>
 <WebPartsTemplate>
 <asp:Calendar runat=”server” ID=”Calendar1”
 Title=”My Calendar”/>
 <asp:Label runat=”server” ID=”Label1”
 Title=”My First Label” Text=”A simple web part”/>
 <asp:Label runat=”server” ID=”Label2”
 Title=”My Second Label” Text=”Another web part”/>
 <abc:Logo runat=”server” ID=”Logo1” Title=”Company Page”/>
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>
 </td>
 </tr>
 <tr>
 <td>
 <asp:EditorZone ID=”EditorZone1” runat=”server”>
 <ZoneTemplate>
 <asp:AppearanceEditorPart id=”AppearanceEditorPart1”
 runat=”server” />
 <asp:LayoutEditorPart id=”LayoutEditorPart1”
 runat=”server” />
 </ZoneTemplate>
 </asp:EditorZone>
 </td>
 </tr>
 </table>
 <p>
 <asp:Label ID=”Label1” runat=”server”></asp:Label>
 </p>
 <p>
 <asp:Button ID=”Button1” runat=”server” onclick=”Button1_Click”
 Text=”Switch Mode” />
 </p>
 </div>
 </form>
 </body>
</html>

This page adds our simple user control to the second web part zone. In addition it includes
this control, and a number of others, in a DeclarativeCatalogPart web control. The declar-
ative web part lists web parts which the user may choose to appear on the page. The

14

declarative web part is included in a CatalogZone web part container, together with a
PageCatalogPart whose use will be described below. Finally, the editor zone now includes a
LayoutEditorPart web control as well as the AppearanceEditorPart.

The event handler for our ‘Switch Mode’ button now cycles through four (out of fi ve)
possible web part display modes, and the label is used to show to the user which mode is
currently active.

The code in C# is as follows:

protected void Button1_Click(object sender, EventArgs e)
{
 if (WebPartManager1.DisplayMode == WebPartManager.BrowseDisplayMode)
 {
 WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode;
 Label1.Text = “Web parts are currently in edit mode”;
 }
 else if (WebPartManager1.DisplayMode ==
 WebPartManager.EditDisplayMode)
 {
 WebPartManager1.DisplayMode = WebPartManager.DesignDisplayMode;
 Label1.Text = “Web parts are currently in design mode”;
 }
 else if (WebPartManager1.DisplayMode ==
 WebPartManager.DesignDisplayMode)
 {
 WebPartManager1.DisplayMode = WebPartManager.CatalogDisplayMode;
 Label1.Text = “Web parts are currently in catalog mode”;
 }
 else if (WebPartManager1.DisplayMode ==
 WebPartManager.CatalogDisplayMode)
 {
 WebPartManager1.DisplayMode = WebPartManager.BrowseDisplayMode;
 Label1.Text = “Web parts are currently in browse mode”;
 }
}

and similarly in Visual Basic:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As EventArgs)
 If WebPartManager1.DisplayMode Is _
 WebPartManager.BrowseDisplayMode Then
 WebPartManager1.DisplayMode = WebPartManager.EditDisplayMode
 Label1.Text = “Web parts are currently in edit mode”
 ElseIf WebPartManager1.DisplayMode Is _
 WebPartManager.EditDisplayMode Then
 WebPartManager1.DisplayMode = _
 WebPartManager.DesignDisplayMode
 Label1.Text = “Web parts are currently in design mode”
 ElseIf WebPartManager1.DisplayMode Is _

14.5 EXTENDING WEB PARTS WITH A WEB USER CONTROL 27

28 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

 WebPartManager.DesignDisplayMode Then
 WebPartManager1.DisplayMode = _
 WebPartManager.CatalogDisplayMode
 Label1.Text = “Web parts are currently in catalog mode”
 ElseIf WebPartManager1.DisplayMode Is _
 WebPartManager.CatalogDisplayMode Then
 WebPartManager1.DisplayMode = _
 WebPartManager.BrowseDisplayMode
 Label1.Text = “Web parts are currently in browse mode”
 End If
End Sub

The new modes here are DesignDisplayMode, which offers the user a subset of the facilities
of edit mode whereby they can move web parts around but not edit them in other ways,
and CatalogDisplayMode, which is illustrated in Figure 14.10. The Catalog Zone has both a
Page Catalog and a Declarative Catalog. At present the Declarative Catalog is selected, and
offers the user four web parts to choose from. By selecting the associated check boxes, and
one of the available web part zones, the web parts can be added. The page catalog, which is
not selected, allows the user to restore web parts they have previously deleted.

In CatalogDisplayMode, the user can select web parts from the available catalogs and add
them to any of the web part zones on the page. In our case we have two catalogs, the

 FIGURE 14.10 The web part Catalog display mode

14

14.6 FURTHER INFORMATION ABOUT WEB PARTS 29

declarative catalog which offers the user the choice of web parts listed on the web page, and
the page catalog, which keeps track of web parts the user has closed, and offers them the
chance to retrieve them again. Note that now we are using a page catalog, there is no longer
any reason to prevent the user from closing web parts as described in the previous section.

 14.6 Further Information about Web Parts

In the previous section, we showed how to create a simple web user part containing a
heading and company logo. In practice we would want our web user controls to include
dynamic database-driven content. For example, we could have a web user control which
queried the claims database to count the number of outstanding claims, and report this,
or else the number of policies with outstanding premiums. Often, companies develop
informational ‘dashboards’ for their workers which are driven by such statistics, displaying
them in a graphical or visual format. You have already seen the ASP.NET controls which
allow you to display database content in tabular form. There are also numerous graphical
controls from third parties, as you will see if you enter a phrase such as ‘asp.net chart con-
trol’ into your favorite search engine, as illustrated in Figure 14.11. Developing a dynamic
database-driven web user control is therefore left as an exercise for you.

 FIGURE 14.11 Some of the many ASP.NET chart controls which are available from
third parties over the web

asp.net chart control - Google Search - Windows Internet Explorer

30 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

It has so far been implicitly understood that changes to web parts made using Edit, Design
or Catalog mode will, by default, affect only the current user. Interestingly, however, there
is an additional facility of the web parts framework whereby any changes are shared by all
users. In effect, this allows customization of the web portal. This mode of operation must
be enabled by executing the WebPartManager1.Personalization.ToggleScope() method.
This method can only be executed successfully if the current user has been granted per-
mission to enter shared scope, which requires the addition of lines such as the following in
the site’s web.confi g fi le:

<webParts>
 <personalization>
 <authorization>
 <allow roles=”admin, site_designer” verbs=”enterSharedScope” />
 </authorization>
 </personalization>
</webParts>

There are many other aspects and features of web parts, more than can be covered in the
space available here. Indeed, whole books have been written on this subject, for example
Neimke (2006). In particular, you can program your own custom web parts, rather than
developing web user controls. Moreover, there is the ability to defi ne connections between
web parts so that they can share information. These and other features are discussed in
a number of on-line help pages and tutorials which will allow you to exploit their full
potential. In fact there is a wealth of help and on-line information which will allow you
to exploit their full potential. You should note however that some time and coding effort
will be required for this. You should also be aware that some of the available material cov-
ers the use of web parts in Microsoft’s SharePoint system and these web parts extend yet
further their use in ASP.NET.

14

EXERCISES 31

Self Study Questions

 1. What method is used to save an uploaded fi le to disk?

 2. What CSS attribute is used to fl oat an HTML element such as an ordered list?

 3. What method is used to indicate the start of a database transaction?

 4. What method is used to transmit binary data into the HTTP output stream?

 5. What directive is used to indicate that an ASP.NET page should be cached?

 6. What control is required before any other web part control may be used?

 7. What directive is used to declare the web user controls to be used by a web form?

 8. Name two features Visual Studio provides which VWD does not.

 9. Name one feature which VWD provides which Visual Studio does not.

 10. What utility must you run to set up the membership database for use by the full
 edition of SQL Server?

Exercises

 14.1 As noted previously, the code for UploadImage.aspx should be wrapped in an ACID
 database transaction to guard against interference between two users uploading fi les
simultaneously. Taking the code from UploadImage2.aspx as a model, make the fi rst
web form transactional.

 14.2 Modify UploadImage.asp so that it stores a thumbnail as well as the original image.
To implement this, you can use the Microsoft .Net System.Drawing.Bitmap and Sys-
tem.Drawing.Image classes.

 14.3 Develop a web user control which displays the number of open (unapproved) claims.
Add this web part to the skeleton web portal developed above.

 14.4 If you have access to a full edition of SQL Server, port the insurance database and
associated pages we developed using the Express Edition to the full edition.

32 CHAPTER 14 ADDITIONAL ASP.NET FEATURES

14

References and further reading

ASP.NET Web Parts Overview, Microsoft Developers Network,
(http://msdn.microsoft.com/en-us/library/hhy9ewf1.aspx).
Connection Strings (http://www.connectionstrings.com).
Mitchell, Scott 2006 Storing Binary Files Directly in the Database Using ASP.NET 2.0,
(http://aspnet.4guysfromrolla.com/articles/120606-1.aspx).
Neimke, D., 2006. ASP.NET 2.0 Web Parts in Action. Manning.

SUMMARY

In this chapter, you have looked at and practiced using a number of advanced ASP.NET
features including:

Uploading binary image fi les both to the fi le system, and also directly to the database ●

Displaying binary image fi les from the fi le system and from the database ●

Using the ListView control ●

Displaying database tables using lists rather than tables ●

Programming database transactions ●

Using Web Parts controls ●

Creating and using a web user control ●

Writing code to change the WebPartManager’s DisplayMode ●

You also read about a number of other ASP.NET features such as:

Page output and database caching ●

Third party controls for charting ●

Web part customization and connections ●

