
1

CHAPTER 15

Beyond Express Edition: Special Features 
of Visual Studio

INTRODUCTION

So far in Dynamic Web Application Development using ASP.NET we have looked at features 
of Visual Web Developer that are available in the Express Edition of the product. However the 
 Express Edition does not have all of the features available with the complete edition of Visual Web 
 Developer, which is shipped with Visual Studio. In this chapter we introduce a number of  important 
features of the full edition of the product, including the ability to create mobile web forms and 
localization. We also outline some of the other differences between the Express  Editions of Visual 
Web Developer, and also SQL Server, and the professional versions typically used in commercial 
web development.

 15.1 Beyond Visual Web Developer Express Edition

So far, this book has covered ASP.NET web development using the Express Editions of 
Visual Web Developer and SQL Server. Professional or commercial web developers are 
more likely to use a commercial edition of this software, so it is worthwhile pointing 
out here the main differences. There is no standalone commercial edition of Visual Web 

LEARNING OBJECTIVES

To understand how Visual Web Developer Express Edition differs from the  ●

full version provide with Visual Studio

To be aware of the various mark-up languages for mobile devices ●

To be able to use Visual Studio to build mobile web applications ●

To be able to localize a web application ●

To be aware of current developments in .NET ●



2 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

Developer. Instead, you should buy one of the versions of Visual Studio such as Stan-
dard, Professional or Team System, where the complete version of Visual Web Developer 
is one of the installation options. Figure 15.1 shows the installation dialog of Visual Studio 
2008, where Visual Web Developer can be seen as one of the installation and maintenance 
options, under the ‘Language Tools’ category.

In general, each of these installation categories provides a superset of the features in 
Visual Web Developer Express Edition. For example, they all support the development 
of desktop Windows applications, and a wider range of programming languages including 
for example C++ as well as C# and Visual Basic. These extra features of course can be 
a disadvantage while you are still learning about ASP.NET web development. Visual Web 
Developer Express Edition is already a rich and powerful environment which takes time to 
learn how to use fl uently. Eventually, however, it is likely you will feel the need for some of 
the additional features provided by one of the full Visual Studio products. These include 
enhanced debugging and refactoring facilities, richer support for projects and code sharing, 
more extensive integration with the Microsoft Developer Network (MSDN) and support 
for external tools or plug-ins, and fi nally a wider range of target platforms, notably mobile 
devices.

 FIGURE 15.1  Visual Web Developer is one of the ‘Language Tools’ options in the 
Visual Studio installation/maintenance process

Choose Default Environment Settings



15

15.1 BEYOND VISUAL WEB DEVELOPER EXPRESS EDITION 3

As well as these broad aspects, there are some specifi c differences which you will notice 
when you look at the user interface of these different products. Some of these relate to 
the broader scope of Visual Studio, but even restricting attention to web development, 
there are some signifi cant differences, for example the following features:

Visual Studio includes an accessibility checker for web pages and sites. This allows  ●

you to validate your HTML against accessibility standards such as WCAG and sec-
tion 508.

Visual Studio also includes a facility to ‘publish’ a website, not just copy it. This  ●

facility in fact allows you to compile and build your website, as one or more 
binary fi les. Doing so helps to protect your source code (particularly useful if 
you are using a third party Internet Service Provider to host your site) and has a 
slight performance advantage relative to the standard ‘just-in-time’ approach to 
compilation.

Visual Studio does not include the ASP.NET Website Administration Tool. This tool  ●

is replaced by the Build Confi guration Manager, which is less useful for web devel-
opment. This means it is more likely you will need to edit your site’s web.confi g 
confi guration fi le directly, or else make use of additional tools such as the confi gura-
tion tools provided with IIS or SQL Server. For example, to set up the membership 
provider database used by the ASP.NET Login and Web Parts controls, you will need 
to run the aspnet_regsql utility.

Visual Studio does not include a Database Explorer window. Instead, it has a Server  ●

Explorer window which allows you to monitor and control a range of servers, includ-
ing, but not limited to, databases. In addition, the Server Explorer allows you access 
to Crystal Reports, event logs and message queues. The functions provided are a 
superset of Visual Web Developer’s Database Explorer. To access a database, open 
the Database Connections node, and thereafter the same facilities are provided, for 
example to view and edit database tables, which behave the same as in Visual Web 
Developer Express Edition. 

Note than when running Visual Studio for the fi rst time, it asks you to specify the type of 
development activity you most often engage in. You should choose Web Development, and 
the appropriate settings will be applied, and appropriate options emphasized. You can reset 
these settings and options later, of course, using the ‘Tools’ � ‘Settings’ menu options. In 
Web Development mode, Visual Studio appears like an enhanced version of Visual Web 
Developer Express Edition, with one or two more menu items, and a few additional com-
mands on each menu. The screen shots in Figure 15.2 give some indication of the scope 
and nature of these additional items. There are additional commands available in the Build 
and Debug menus in Visual Studio compared to Visual Web Developer Express Edition, 
which include the ability to build, rebuild and publish a website, and the ability to attach 
to and debug a running process. The third screen shot shows the website accessibility vali-
dation dialog.

As mentioned previously, the Database Explorer window is replaced by the Server Explorer. 
This can be launched using the ‘View’ � ‘Server Explorer’ menu command which, by 
default, can be found in the same position in the same menu as when using Express edi-
tion. As the screen shots in Figure 15.3 demonstrate, the Server Explorer facilities are, as 
usual, a superset of those found in the Express Edition of Visual Web Developer. 

Similarly, when creating a new fi le, you will note that a few additional types are available 
such as ADO.NET Data Service, Crystal Report, or Class Diagram.



4 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 FIGURE 15.2 Additional commands available in Visual Studio

(a)

(b)

Accessibility Validation
(c)



15

The current version of Visual Studio is known as 2008, and the next major release 
is scheduled for 2010. No doubt you will fi nd descriptions on-line of the expected 
improvements, as well as beta versions of this software for you to download and experi-
ence for yourself.

 FIGURE 15.3  Visual Studio’s Server Explorer window allows you to view and 
monitor all types of server, not just databases. If you open up the Data 
Connections node, however, you will fi nd it offers the same view and 
facilities as Express Edition’s Database Explorer

(a) Server Explorer

(b) Server Explorer

15.1 BEYOND VISUAL WEB DEVELOPER EXPRESS EDITION 5



6 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.1.1 SQL Server

The free Express Edition of SQL Server has ample functionality for all the examples we 
have covered in this book. However the commercial edition of SQL Server has a wealth 
of additional features which make it a better choice for use in a commercial production 
environment. Note that the Express Edition license warns that Microsoft may not provide 
support services for this product.

The additional features of the full version of SQL Server relate mostly to monitoring, 
administration and scalability. For example, if you wish to spread your database across 
multiple database servers, you will need the full edition of SQL Server. Even for smaller 
systems, however, you should certainly benefi t from some of the other ease of administra-
tion features.

One difference you will notice when switching from the Express Edition to the full 
SQL Server is that it runs using a different process name. Thus your connection strings 
must change from using a name such as .\SQLExpress, signifying the instance of 
SQL Server Express Edition running on the local host, to ones such as remoteServer\
SQLServer, signifying an instance of SQL Server running on a remote host. It is likely 
that the connection string will also vary in other ways, relating for example to the dif-
ferent security policy. Note that there is a whole website devoted to explaining and 
sharing connection strings.

A further difference is, as noted above, the need to use the aspnet_regsql utility to set up 
the membership database for use by the ASP.NET Login and Web Parts controls (if you are 
using these).

 15.1.2 Testing your website

To start with, testing a website is easy, as you can simply browse around your site using 
the internal web browser provided with Visual Web Developer or an external one. As your 
site grows, however, you will fi nd that testing becomes somewhat tedious and repetitive. 
At this point, you should consider making use of automated web testing tools.

Fortunately, Visual Studio and Microsoft .NET include tools for unit testing of classes 
and methods. This can be accessed using the Test menu in Visual Studio, as illustrated in 
Figure 15.4.

The most popular third party automated testing tool for Microsoft .NET is NUnit, a vari-
ant of the popular JUnit and SUnit tools for Java and Smalltalk respectively (these various 
unit testing tools are known collectively as the ‘xUnit family’). NUnit is a freely available 
tool, funded by voluntary contributions. It is relatively mature, being in its fi fth major 
release at the time of writing. You should note, however, that its main focus is testing 
standard .NET code. This means you can use it to test your business logic, or data access 
objects, provided you have created these as independent classes, which of course is the 
correct way to design such code.

For testing ASP.NET pages, you need more specialized testing software. One such sys-
tem, used internally by the ASP.NET QA team, is the ‘Lightweight Test Automation 



15

15.2 MOBILE MARK-UP LANGUAGE EVOLUTION 7

Framework for ASP.NET’, which is freely available, but unsupported. Alternatively, you 
will probably wish to consider Microsoft’s Team System Test Edition, which provides 
a comprehensive range of testing tools for web applications and services. Beyond this, a 
range of commercial testing tools are available, either generic ones from  compan ies 
such as IBM/Rational, or a more specialized ones which are typically  produced by 
smaller companies.

 15.1.3 Website development features in Visual Studio

So far in this chapter we have been reviewing some general differences in the feature set 
between Visual Web Developer Express Edition and the full version of Visual Studio. In 
many cases the differences are primarily about the full version providing a more profes-
sional environment, with different ways of achieving a similar result. In some cases, how-
ever, there are some important website development tools that are not available in Express 
Edition. Two of these are mobile web page development and localization. In the remainder 
of this chapter we will look at how both of these features can be implemented in the full 
edition of Visual Studio.

 15.2 Mobile mark-up language evolution

In the fi rst few years of the World Wide Web, we saw an evolution from static to dynamic 
content, but a more recent evolution has been from single format content to adaptive 
content. One of the most important aspects of an adaptive web application is the  ability 
for the content delivery to be adapted to the capabilities of the client device, so that the 
same content can be delivered to a range of devices including desktop computers, PDAs, 
mobile phones, set top boxes, games consoles, etc. It is becoming increasingly necessary 

 FIGURE 15.4  Microsoft Visual Studio includes support, inside the development 
environment, for creating and running test cases. You can specify, 
using the test run confi guration, whether to test locally or remotely, 
the required code coverage instrumentation, and so on



8 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

to adapt presentation to these different device types, particularly as the penetration 
of mobile phones that are capable of web browsing has become widespread. The issue 
to address of course is that different devices have different presentation capabilities, 
for example you cannot run AJAX on every mobile device, because not all phones sup-
port JavaScript enabled web browsers, and mobile browsers do not all support the same 
mark-up languages. Another aspect of the limitations of mobile browsers is that many of 
them are not able to process XSL transformations, so are unable to render XML docu-
ments. Stylesheets are also problematical, because although many mobile browsers sup-
port Stylesheets they are not the same as the CSS used in desktop browsers. Despite 
these diffi culties, it is possible to develop web applications that can adapt to different 
mobile device browsers by using appropriate tools. In this chapter we will look at 
the evolution and characteristics of the various types of mark-up that are supported by 
mobile browsers and see how Visual Web Developer makes it possible to write device-
adaptive web applications.

We saw in Chapter 3 that HTML has evolved through several versions, eventually 
being superseded by XHTML. However these mark-up languages have been primarily 
oriented towards the desktop PC browser. In parallel with the evolution of desktop 
browser mark-up, there have been a number of different types of mark-up specifically 
designed for mobile devices. Early examples of this type of mark-up included cHTML 
(Compact HTML) for iMODE phones, used primarily in Japan but also in some parts 
of Europe, and HDML (Handheld Device Mark-up Language), which was designed 
as a more generic mark-up language by Unwired Planet. There was also a W3C note 
regarding ‘HTML 4.0 Guidelines for Mobile Access’ (Kamada, 1999). The approach 
of these mark-up languages was to provide a simplified subset of desktop browser 
mark-up more suited to the restrictions (display, processing power, memory, etc.) of 
mobile devices.

 15.2.1  The Wireless Access Protocol (WAP) and the Wireless 
Mark-up Language (WML)

In 1997, Nokia, Ericsson, Motorola and Unwired Planet cooperated to launch the 
Wireless Application Protocol (WAP) and provide an industry standard platform for 
mobile web access. The group became the WAP Forum in 1998, and expanded to 
include members from across the mobile communications industry. The forum had 
500 members by 2001. In 2003 the WAP Forum became the Open Mobile Alliance 
(OMA), supporting more general standardization efforts within the mobile commun-
ications industry.

Part of the WAP platform was the Wireless Mark-up Language (WML). cHTML and WML 
had rather different approaches to supporting the mobile Web. cHTML was designed as 
a subset of HTML compatible with all its major versions (2.0, 3.2 and 4.0). In order to 
make sure that pages could be rendered on the simplifi ed browsers available in iMODE 
phones, Stylesheets, tables, background colors and multiple fonts were excluded from 
the specifi cation. One advantage of cHTML was that its pages could also be rendered on 
a standard desktop browser. Although a note to the W3C provided a suggested DOCTYPE 
for cHTML:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD Compact HTML 1.0 Draft//EN”>



15

cHTML documents do not have to be well formed and the DOCTYPE has not been used 
in practice.

WML had a very different approach, with many of its concepts based on HDML, and was 
much more ambitious. It included many features that were intended to leverage the spe-
cifi c characteristics of the mobile phone platform, such as a ‘deck of cards’ architecture, 
which meant a single page could be downloaded that included multiple ‘cards’. Each card 
provided a different view in the browser. Effectively this meant that a single download pro-
vided multiple web pages. WML also included its own scripting language and Stylesheets. 
Unlike cHTML, WML was not a subset of HTML and had its own mark-up syntax, though 
this syntax was XML compliant, meaning that it was well formed, and valid against the fol-
lowing DTD (for version 1.1):

<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
  “http://www.wapforum.org/DTD/wml_1.1.xml”> 

The system doctype can also be directed to:

http://www.openmobilealliance.org/tech/DTD/wml_1_1.dtd

Here is an example of some WML mark-up. Note that while some of the mark-up is com-
patible with XHTML, other tags are not, in particular the ‘wml’ root element and the 
‘card’ element, which identifi es one of the cards in the current deck.

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN” 
   “http://www.wapforum.org/DTD/wml_1.1.xml”>
<wml>
 <template>
  <do type=”prev” label=”Back”><prev/></do>
 </template>
 <card id=”w” title=”Insurance Claim Details”>
 <p>Policy Number:
  <input type=”text” name=”policyNumber” value=”” size =”10”/>
  <br/>Amount claimed:
  <input type=”text” name=”amount” value=”” size =”10”/><br/>
  <select name=”type”>
   <option value=”buildings”>Buildings</option>
   <option value=”contents”>Contents</option>
  </select>
  <br/>Description of claim:<br/>
  <input type=”text” name=”description” value=”” size=”30”/><br/>
. . . etc
 </card>
</wml>

While cHTML was successful in the Japanese market, WAP did not fi nd major market suc-
cess in the early years. Slow mobile connections made it diffi cult to access the mobile web, 
and the restrictions of the mobile phone form factor also discouraged users. It was only 
with the introduction of the fi rst WAP portal, Vodafone Live!, in 2001, which was sup-
ported by customized handsets that could automatically access the portal to make access 
easier, that WAP began to become more popular.

15.2 MOBILE MARK-UP LANGUAGE EVOLUTION 9



10 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.2.2 XHTML-Basic and XHTML-Mobile Profi le

The experience of both cHTML and WML led to standardization efforts across the mobile 
communications industry, to provide a global mark-up for all mobile devices. The outcome 
of this was XHTML-Basic, a subset of XHTML that is

‘designed for Web clients that do not support the full set of XHTML features; for 
example, Web clients such as mobile phones, PDAs, pagers, and set top boxes.’ 

(McCarron et al., 2007)

The fi rst version (1.0) was defi ned in 2000 and version 1.1 in 2006. Like previous mobile 
mark-up, XHTML-Basic provides a simple set of tags that do not place undue burdens on 
the mobile device’s display, processor or memory. Table 15.1 summarizes the elements 
that comprise XHTML-Basic.

There are a few elements in XHTML-Basic that we have not introduced in previous chap-
ters, so we will briefl y cover them here. Most of them are text formatting elements that in 
practice render the text either in italics or in a monospace font. The ‘object’ element is more 
complex, and of course the types of object that might be embedded into the page would be 
constrained by the capabilities of a given mobile device. Table 15.2 lists these elements and 
briefl y describes their meanings.

XHTML-Basic is a generic approach to providing a subset of XHTML for a generic range of 
limited devices, but does not specify a particular type of device. In contrast, the mobile phone 
industry required a mark-up language that was intended specifi cally for mobile phones, and 
therefore did not need a language that was totally generic. Therefore the industry developed the 
specifi cation for XHTML-MP (Mobile Profi le), to produce a ‘richer authoring language’ than 
XHTML-Basic (OMA, 2006). The OMA have adopted XHTML-MP as the migration path for 
WML, providing an updated version of WML (WML-2) for backward compatibility, which is 
otherwise superseded by XHTML Mobile Profi le as the mark-up language used in WAP 2.0.

 TABLE 15.1 Elements in XHTML-Basic

Module Element

Structure body, head, html, title 

Text dfn, div, em, h1, h2, h3, h4, h5, h6, kbd, p, 
pre, q, samp, span, strong, var 

Hypertext a

List dl, dt, dd, ol, ul, li

Basic forms form, input, label, select, option, textarea

Basic tables caption, table, td, th, tr 

Image img

Object object, param

Meta information meta

Link link

Base base

pmg
Rectangle

sureshkumar
Rectangle
Please note that these characters already in CAPS only. Kindly let us know if it needs any changes.



15

 TABLE 15.2 Elements from XHTML-Basic not previously introduced

Element Meaning

Dfn Defi nition: surrounds the defi nition of a term

Kbd Keyboard: describes characters to be typed in at the keyboard

Pre Preformatted: maintains existing line feeds and spaces in 
the text

Q Quotation: adds quotation marks

Samp Example: describes text which is an example of something

Var Variable: describes text that is being used as a variable

Object A multi-media element that enables objects such as 
applets, images, plugins and other documents to be 
embedded in the page

Param Parameter: a parameter value used with the object element 
to defi ne parameters to the embedded object

Base Base URL: enables a different URL to be used for relative 
references other than the one the page actually came from

XHTML-MP is a superset of XHTML-Basic, which includes some additional elements and 
attributes from the full version of XHTML (Table 15.3). This table shows the additional 
elements and attributes in XHTML-MP version 1.2 (earlier versions (1.0 and 1.1) sup-
ported only some of these).

One important aspect of XHTML-MP is its support for the ‘style’ element and attribute, 
enabling Stylesheets to be applied. These are not, however, intended for use with standard 
CSS but enable the use of WAP CSS (WCSS), a special type of stylesheet defi nition that 
is defi ned in the WAP 2.0 specifi cation. XHTML-MP also provides support for scripting 
using ECMA Script Mobile Profi le, another initiative of the OMA. However it should be 
noted that an XHTML-MP browser may not provide support for all aspects of the speci-
fi cation. In addition, there are many other aspects to designing for the mobile phone  format 
than simply using a particular mark-up (Passani, 2007).

 TABLE 15.3  Additional elements and attributes in XHTML-MP, not present 
in XHTML-Basic

Module Element/Attributes

Forms fi eldset, optgroup

Lists ‘start’ attribute in ordered lists
‘value’ attribute in list items

Presentation b, big, hr, i, small

Stylesheet ‘style’ element

Style attribute ‘style’ attribute

15.2 MOBILE MARK-UP LANGUAGE EVOLUTION 11



12 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

In XHTML-MP there is one element that we have not previously introduced, the 
‘optgroup’, which is used with a ‘select’ tag. It is useful where a select list has a large num-
ber of entries that can be grouped in some way to make them easier to navigate.

The following example shows some XHTML-MP mark-up. Of course much of an 
XHTML-MP document will look exactly like a standard XHTML document. The main 
differences, however, are the DOCTYPE (this example is for XHTML-MP version 1.2) 
and, in this case, the use of a ‘style’ attribute that refers to a WAP CSS style:

<?xml version=”1.0”?> 
<!DOCTYPE html PUBLIC “-//OMA//DTD XHTML Mobile 1.2//EN” 
“http://www.openmobilealliance.org/tech/DTD/xhtml-mobile12.dtd”> 
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”> 
<head> 
<title>Welcome to WebHomeCover</title> 
</head> 
<body> 
<p> 
<div style=”display: -wap-marquee”>Welcome to the claims department at 
WebHomeCover.com</div> 
<br/>click&nbsp; 
<a href=”claimdetails.jsp”>here</a> 
&nbsp;to enter your claim 
</p> 
</body> 
</html> 

Figure 15.5 summarizes the relationships between the various mark-up languages that we 
have looked at so far in this chapter. It can be seen from this diagram that any future devel-
opment of applications using mobile mark-up should be using XHTML-MP rather than 
any earlier standards, particularly as it has been given very strong support from the OMA.

 FIGURE 15.5  The evolution of mark-up languages for mobile devices (shaded boxes 
are types of mobile mark-up) 

Mark-up language

Mobile mark-up
language

HTML
3.2

HTML
4.0

XHTML
1.0

XHTML-
Basic

XHTML-
MP

HTML 4.0
Mobile
Access

cHTML 

HTML
2.0 

XML
1.0

HDML
WML
1.x

WML
2.0

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007



15

15.3 DEVICE ADAPTIVITY WITH MOBILE WEB FORMS 13

 15.2.3 The .mobi Top Level Domain

With the move towards XHTML-MP as a standard mark-up for mobile device brows-
ers, there has been an effort on behalf of part of the mobile communications industry to 
enable mobile web users to more easily identify websites that can be browsed using mobile 
devices. Thirteen mobile and Internet organizations formed the mTLD (.mobi Top Level 
Domain) group to promote the adoption of a new top level Internet domain with a ‘.mobi’ 
extension. Any web application that uses this extension is expected to provide pages spe-
cifi cally for mobile devices, so that users of the mobile web know which sites are likely to 
work effectively on their mobile browsers. The mechanism for this is simply to encourage 
developers to create mobile mark-up using XHTML-MP. The guide document for .mobi 
developers states that 

‘the response must be encoded in XHTML-MP unless the device accessing it is 
known to support an alternative choice of mark-up.’ 

(Cremin and Rabin, 2006)

However there are some that object to the approach of having a specifi c domain name 
extension for mobile web applications, in particular Tim Berners-Lee, who objected 
strongly to the original proposals, and wrote:

‘The Web must operate independently of the hardware, software or network used 
to access it, of the perceived quality or appropriateness of the information on it, 
and of the culture, and language, and physical capabilities of those who access it.’ 

(Berners-Lee, 2004)

Nevertheless, the ‘.mobi’ top level domain was approved by ICANN in 2006 and seems to 
have found some popularity, at least according the mTLD website (http://pc.mtld.mobi/).

 15.3 Device adaptivity with Mobile Web Forms

In the previous section we saw that mark-up used with mobile devices has developed 
through various different syntaxes, some that were subsets of HTML and some XML syn-
taxes. In addition there are many different types of mobile device, and new models are 
being introduced to the market all the time. These devices vary in physical form factors 
such as screen size and resolution, colors supported, layout of control buttons, etc., as 
well as varying in the types of mobile browser that they support. This makes it diffi cult 
for the developer of a web application who wants to be able to support a wide range of 
mobile clients. Ideally, we would like to be able to provide customized versions of our web 
applications for each and every device capability, but this would be too time-consuming 
and diffi cult to maintain. Although there has been a gradual move towards XHTML-MP as 
the standard mark-up language for mobile browsers, there are still a wide range of mobile 
device browsers in use, supporting many of the mark-up languages we have introduced. 
This means that in order to support all types of mobile browsers, we need to write web 
applications that can generate dynamic content in a range of different mark-up languages. 
Doing this manually would be very arduous, but fortunately there is support for creating 
adaptive web pages within the full version of Visual Studio using Mobile Web Forms.



14 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 
  NOTE

Unfortunately the ability to create adaptive pages for the mobile web 
is not included in Visual Web Developer Express Edition.

 15.3.1 Creating a mobile adaptive web form in Visual Studio

Visual Studio 2005 automatically included a ‘Mobile Web Form’ as one of its installed 
templates. Unfortunately, updates to the framework in Visual Studio 2008 have meant 
that this template now has to be installed separately. The following section explains how to 
install and create mobile web forms in Visual Studio 2008.

 
  NOTE

When using the mobile web form template in Visual Studio 2008, you 
have to work in Source view, since Design view is not compatible with 
this template.

The fi rst step in creating an adaptive web page in Visual Studio 2008 is to manually install 
the page templates available from Omar Khan’s blog site at Microsoft:

http://blogs.msdn.com/webdevtools/archive/2007/09/17/tip-trick-asp-net-mobile-
development-with-visual-studio-2008.aspx

The first step is to download the template zip file from the blog site. Once you have 
unzipped this fi le into a folder, you will see that it consists of a main folder (‘ASP.NET 
Mobile Templates’) with four subfolders (Figure 15.6).

The zip fi les that appear in these folders have to be copied to specifi c folders. Information 
about how to do this is included in the ‘readme’ fi les, but basically all you have to do is:

Copy all the zip fi les with fi lenames ending with “_cs” in the ‘ASP.NET Web Appli- ●

cation CS’ folder to:

  [My Documents]\Visual Studio 2008\Templates\ItemTemplates\Visual C#

 FIGURE 15.6 The subfolders in the Mobile Templates download



15

Copy all the zip fi les with fi lenames ending with “_vb” in the ‘ASP.NET Web Appli- ●

cation VB’ folder to:

  [My Documents]\Visual Studio 2008\Templates\ItemTemplates\Visual Basic

Copy all the zip fi les with fi lenames ending with “_cs” in the ‘ASP.NET Website CS’  ●

folder, and all the zip fi les with fi lenames ending with “_vb” ASP.NET Website VB’ 
folder, to:

  [My Documents]\Visual Studio 2008\Templates\ItemTemplates\Visual Web 
Developer

You will need to restart your machine before Visual Studio will be able to properly inte-
grate these templates. Once you have done so, it should now be possible to create a new 
‘Mobile Web Form’ using the ‘Project’� ‘Add Module’ dialog (Figure 15.7). In this exam-
ple, the new fi le has been named ‘MobileForm.aspx’.

 
  NOTE

For some reason the mobile templates do not appear in the Add New 
Item dialog if you choose the ‘File’ � ‘New File’ menu option, so you 
must use ‘Project’ � ‘Add Module’.

The generated code for the mobile web form that appears in Source view is somewhat dif-
ferent from that usually generated for a web form. Instead of the page including a stand-
ard DOCTYPE, such as XHTML 1.0, the page leaves the generation of the appropriate 
DOCTYPE to the framework, since different mobile devices will require different types 
of mark-up. The body of the page contain a ‘mobile:Form’ element, which will act as a 
container for special mobile controls.

 FIGURE 15.7  The mobile web form templates that appear in the Add New Item 
dialog if you select ‘Project’ � ‘Add Module’

Add New Item - WebApplication1

15.3 DEVICE ADAPTIVITY WITH MOBILE WEB FORMS 15



16 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

<%@ Page Language=”VB” AutoEventWireup=”false” 
Inherits=”WebApplication1.MobileForm” Codebehind=”MobileForm.aspx.vb” 
%>
<%@ Register TagPrefi x=”mobile” 
Namespace=”System.Web.UI.MobileControls” Assembly=”System.Web.Mobile” 
%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<body>
    <mobile:Form id=”Form1” runat=”server”>

    </mobile:Form>
</body>
</html>

Once a mobile web form has been created, controls may be added to it from the ‘Mobile 
Web Forms’ group of controls in the Toolbox. This group of controls includes mobile ver-
sions of some familiar controls such as TextBoxes, Labels and validation controls. It also 
includes some special controls for mobile device development such as the ‘PhoneCall’ con-
trol (Figure 15.8).

Here is the source of a mobile web form with some simple controls added to it: a Label, a 
TextField and a Command. The Command acts in a similar way to how a Button would be 
used on a standard web page. However some mobile devices will map commands to soft 
keys on the device, rather than buttons on the screen. This means that the Command but-
ton (with the text ‘Ring Number’) may or may not appear as a visual button on the mobile 
device. Therefore we need to also set the ‘SoftkeyLabel’ property of this control, because 
this will be used if the device maps commands to keys on the mobile device keypad.

<%@ Page Language=”C#” AutoEventWireup=”true” 
Inherits=”MobileWebCSharp.MobileForm” Codebehind=”MobileForm.aspx.cs” 
%>
<%@ Register TagPrefi x=”mobile” 
Namespace=”System.Web.UI.MobileControls” Assembly=”System.Web.Mobile” 
%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
 <body>
  <mobile:Form id=”Form1” runat=”server”>
   <mobile:Label ID=”Label1” Runat=”server”>Enter Phone Number
   </mobile:Label>
   <mobile:TextBox ID=”TextBox1” Runat=”server”>
   </mobile:TextBox>
 <mobile:Command ID=”Command1” Runat=”server” SoftkeyLabel=”Ring”>
  Ring Number
 </mobile:Command>
  </mobile:Form>
 </body>
</html>

Mobile web forms are fl exible enough to generate pages for standard desktop browsers 
as well as mobile browsers. Figure 15.9a and b shows our mobile web form rendered on 



15

two different clients; a mobile device simulator and a standard desktop browser (Internet 
Explorer 7). Note that when the form is displayed in the desktop browser, the Command 
appears as a standard ‘submit’ button, but when it is displayed on the mobile device emu-
lator, there is a soft key mapping, and no visible button on the screen.

 
  NOTE

The soft key command will read ‘edit’ rather than ‘ring’ if the TextField 
has focus

It is interesting to compare the generated mark-up for these two types of browser. If you view 
the source of the page in the desktop browser, we can see that (as well as some JavaScript) 
part of the page is standard HTML, for example the rendering of the Command button:

<input name=”Command1” type=”submit” value=”Ring Number”/>

Toolbox

 FIGURE 15.8 The Mobile Web Forms group of controls in the Toolbox

15.3 DEVICE ADAPTIVITY WITH MOBILE WEB FORMS 17



18 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 FIGURE 15.9  A mobile web form generating different mark-up for mobile and 
desktop browsers. The image on the right is from the Openwave 
simulator. This simulator, which was used to create all the mobile 
browser screen images in this section, can be downloaded from the 
Openwave Developer Network (http://developer.openwave.com/dvl/
tools_and_sdk/phone_simulator/)

http://localhost:1649/MobileForm.aspx - Windows Internet Explorer(a)

(b)

In contrast, the version of the page sent to the mobile device is marked up in WML:

<!DOCTYPE wml PUBLIC ‘-//WAPFORUM//DTD WML 1.1//EN’ 
‘http://www.wapforum.org/DTD/wml_1.1.xml’>
<wml>



15

15.4 INTEGRATING MOBILE WEB FORMS WITH A WEB APPLICATION 19

 <head> 
  <meta http-equiv=”Cache-Control” content=”max-age=0” /> 
 </head> 
 <card> 
<onevent type=”onenterforward”>
 <refresh>
  <setvar name=”TextBox1” value=”” />
 </refresh>
</onevent> 
<do type=”accept” label=”Ring”>
 <go href=”/Mobile/MobileForm.aspx” method=”post”>
  <postfi eld name=”__EVENTTARGET” value=”Command1” />
  <postfi eld name=”TextBox1” value=”$(TextBox1)” />
 </go>
</do>
<p>Enter Phone Number<input name=”TextBox1” /> 
</p>
</card> 
</wml>

 15.4  Integrating mobile web forms with a web application

We need some way of integrating mobile web forms mark-up into our existing web applica-
tions while continuing to support desktop browser clients. Although it is possible to write 
an application entirely using mobile web forms, this is rather limiting, because it means that 
desktop browsers will produce a very basic set of view components. If we want to maintain 
our support for the richness of desktop browsers in a web application, along with support 
for mobile devices, we will have to support two streams of web page generation, one for 
powerful full size browsers, supported by the dynamic page generation we already have in 
place, and another for other types of browser that we will support using mobile web forms. 
There are basically two approaches to this problem. One is to take the ‘.mobi’ domain path, 
and simply create two entirely separate web applications, one using standard web forms and 
the other using mobile web forms. Alternatively, we can try to support both types of client 
within the same application. In our example, we will address the second approach.

We can cater for different types of client by analyzing the ‘User-Agent’ header informa-
tion sent within the browser’s HTTP request. In fact this is exactly what the .NET mobile 
controls do in order to identify different types of mobile device, but all we need to do is 
fi lter out the main desktop browsers. Table 15.5 shows the ‘User-Agent’ header sent to 
the server by seven of the major web browsers: Flock, Google Chrome, Internet Explorer, 
Mozilla Firefox, Safari (Windows version), Netscape Navigator and Opera (some aspects 
of these will vary from machine to machine).

We can see from Table 15.5 that six of the major browsers’ user agent strings contain the 
word ‘Mozilla’. Therefore it is quite easy to identify these browsers. The Opera user agent 
string includes the word ‘Opera’, but because there are different versions of Opera for differ-
ent types of client (i.e. there are Opera Mini and Opera Mobile browsers for mobile devices, 
and a version for the Nintendo games console) just identifying the ‘Opera’ string will not be 



20 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

enough to specify an Opera desktop browser. Therefore we would need to also check for the 
‘Windows’ string to ensure that we can differentiate the different versions of Opera.

The following ‘if ’ statement can be used in server-side code to fi lter out the fi ve major 
desktop browsers. Using just these substrings (‘Mozilla’, or ‘Opera’ and ‘Windows’) means 
that the code should be resilient against changes in details such as version numbers:

if(userAgent.startsWith(“Mozilla”) || (userAgent.contains(“Opera”) && 
userAgent.contains(“Windows”)))

Browsers that match these criteria can be sent pages generated using standard XHTML. 
In contrast, the ‘User-Agent’ header for other browsers will be very different, for example 
the OpenWave simulator Version 7 sends the header string:

OPWV-SDK UP.Browser/7.0.2.3.119 (GUI) MMP/2.0 Push/PO

Browsers such as this can be handled separately and pages can be generated from mobile 
web forms library. Of course any desktop browsers that are not picked up by this ‘if ’ 

 TABLE 15.5 The ‘User-Agent’ header information sent to the server by seven 
of the major web browsers

Browser Version ‘User-Agent’ header

Flock 2 Mozilla/5.0 (Windows; U; Windows NT 5.1; 
en-US; rv:1.9.0.5) Gecko/2008121620 Firefox/3.0.5 
Flock/2.0.3

Google Chrome 1 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) 
AppleWebKit/525.19 (KHTML, like Gecko) 
Chrome/1.0.154.65 Safari/525.19

Internet Explorer 8 Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 
5.1; Trident/4.0; .NET CLR 1.1.4322; .NET CLR 
2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 
3.5.21022; InfoPath.1; .NET CLR 3.0.4506.2152; 
.NET CLR 3.5.30729; Offi ceLiveConnector.1.3; 
Offi ceLivePatch.0.0)

Mozilla Firefox 3 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; 
rv:1.9.0.9) Gecko/2009040821 Firefox/3.0.9 (.NET 
CLR 3.5.30729)

Safari 3 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US) 
AppleWebKit/525.27.1 (KHTML, like Gecko) 
Version/3.2.1 Safari/525.27.1

Netscape 
Navigator

9 (fi nal 
version)

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; 
rv:1.8.1.12) Gecko/20080219 Firefox/2.0.0.12 
Navigator/9.0.0.6

Opera 9 Opera/9.64 (Windows NT 5.1; U; en) Presto/2.1.1



15

 statement will be sent pages generated by mobile web forms. However they will still work. 
An associated problem is that some mobile devices will send user agent headers that include 
the word ‘Mozilla’. For example the Nokia 6630 cell phone will send the following header:

Mozilla/4.0 (compatible; MSIE 5.0; Series60/2.8 Nokia6630/4.06.0 Profi le/MIDP-2.0 
Confi guration/CLDC-1.1)

One way of dealing with this is to look for the ‘Windows’ string with Mozilla browsers, but 
this will exclude non-Windows desktop browsers such as Safari running on the Mac. Altern-
atively we could exclude user agents that contain ‘Nokia’, though this would not deal with 
other mobile browsers that might include the ‘Mozilla’ string but are not Nokia phones. In 
the end, there will probably be one or two browsers that slip through the cracks, but we 
will cater correctly for the vast majority of clients.

In order to integrate mobile web forms with our existing pages and processes, we would 
need to provide two paths through the web application, one that uses the existing web 
forms and one that uses the mobile version. To branch to different paths we would start 
from a common default start page which would identify the browser category and forward 
to the appropriate home page.

This page would not render anything on the client browser. Instead, it will contain some 
code in its page load event handler for forwarding the client to the appropriate page, 
depending on the type of browser they are using. The following page load event handler 
for the start page (‘Start.aspx’), contains the code to check the ‘User-Agent’ header (using 
the ‘UserAgent’ property of the ‘Request’ object) and then sets the value of a Boolean 
variable called ‘isMobile’ to either true or false, depending on the value of the user agent 
header. Depending on the contents of that string, control will be passed to either a mobile 
web form or a standard web form.

VB Code

Partial Class Start
 Inherits System.Web.UI.MobileControls.MobilePage

 Protected Sub Page_Load(ByVal sender As Object,
        ByVal e As System.EventArgs) Handles Me.Load
  Dim UserAgent As String = Request.UserAgent
  Dim isMobile As Boolean = True
  If UserAgent.StartsWith(“Mozilla”) Or (UserAgent.Contains(“Opera”) 
         And UserAgent.Contains(“Windows”)) Then
   isMobile = False
  End If
  If isMobile Then
   Server.Transfer(“mobile web form”)
  Else
   Server.Transfer(“standard web form”)
  End If
 End Sub
End Class

15.4 INTEGRATING MOBILE WEB FORMS WITH A WEB APPLICATION 21



22 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.4.1 A mobile web form

As a simple example of a mobile web form that has some useful functionality, we will 
implement a simple form that will display details of an insurance policy, when the user 
enters a valid policy number. The mobile web form is very simple. It consists of a TextBox 
into which the user can enter a policy number, a command button (which will by default 
invoke the page load event) and a blank label that will contain the details of the policy 
when read from the database.

 <%@ Page Language=”C#” AutoEventWireup=”true” 
Inherits=”MobileWebCSharp.Default2” 
Codebehind=”MobilePolicyForm.aspx.cs” %>
<%@ Register TagPrefi x=”mobile” Namespace=”System.Web.UI.MobileControls” 
Assembly=”System.Web.Mobile” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
 <body>
  <mobile:Form id=”Form1” runat=”server”>
   <mobile:Label ID=”Label1” Runat=”server”>Enter a policy number
   </mobile:Label>
   <mobile:TextBox ID=”PolicyTextBox” Runat=”server”>
   </mobile:TextBox>
   <mobile:Command ID=”Command1” Runat=”server”>Command
   </mobile:Command>
   <mobile:Label ID=”Result” Runat=”server”></mobile:Label>
  </mobile:Form>
 </body>
</html>

In the code behind, we need to access the PolicyDAO to read a policy from the database, 
so we need the following delegation method in the ModelFacade:

public PolicyDTO getPolicyByNumber(int number)
{
 PolicyDAO myDAO = new PolicyDAO();
 return myDAO.getPolicyByNumber(number);
}

The code behind is relatively simple, with everything taking place in the page load event 
handler. If the TextBox contains anything, we try to parse the value in the box into an inte-
ger. If this does not throw an exception the value is then used to try to retrieve a policy 
from the database. If a matching policy is found, policy details are displayed (only the type 
and premium in this simple example):

public partial class Default2 : 
System.Web.UI.MobileControls.MobilePage
{
 protected void Page_Load(object sender, EventArgs e)
 {
  if (PolicyTextBox.Text != “”)



15

15.4 INTEGRATING MOBILE WEB FORMS WITH A WEB APPLICATION 23

  {
   ModelFacade facade = new ModelFacade();
   try
   {
    int policyNum = Int32.Parse(PolicyTextBox.Text);
    PolicyDTO policy = facade.getPolicyByNumber(policyNum);
    if (policy != null)
    {
    Result.Text = “Policy type: “ + policy.policyType + 
         “, Premium: “ + policy.annualPremium;
    }
    else
    {
     Result.Text = “No matching policy”;
    }
   }
   catch (Exception ex)
   {
    Result.Text = “Not a valid policy number”;
   }
  }
 }
}

Figure 15.10 shows the mobile form after a valid policy number has been entered.

 FIGURE 15.10 The mobile web form displaying details of a policy



24 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.5 Alternative approaches to mobile systems

In this chapter we have taken a particular approach to adaptivity, namely utilizing the 
features of mobile web forms to generate different mark-up for different client devices. 
Another approach that is sometime used with XHTML data (as opposed to ASP.NET web 
forms) is to use XML transformations to generate different mark-up for different types of 
client. Yet another option to adaptivity would be simply to rely on the mobile browser to 
transform standard web content for the mobile device. This is increasingly possible with 
the continuing development of the Opera Mini and Opera Mobile Browsers. Opera Mini 
is a generic mobile browser that is able to render standard web pages on a small screen by 
converting the original pages. Opera Mobile is a more powerful browser, which is targeted 
to the specifi c mobile device on which it is installed, so there are different versions of the 
browser available for a range of mobile phones. Opera Mobile is a more fully featured 
mobile browser than Opera Mini, and includes support for JavaScript, making it possible 
to develop mobile AJAX applications.

 15.5.1 Non-adaptive mobile systems

Instead of creating mobile web forms that adapt to mobile devices, another signifi cant 
.NET development theme is to create mobile web pages for specifi c Windows mobile 
devices using target platforms such as Windows Mobile. In Visual Studio, we develop 
this type of software by selecting ‘File’ � ‘New Project’ then selecting a language (C#, 
VB, . . . ) and fi nally selecting ‘Smart Device’ project. Within this project, you can choose 
your target platform (Figure 15.11).

Add New Smart Device Project - SmartDeviceProject1

 FIGURE 15.11 Selecting a target device platform for a Smart Device Project



15

15.5 ALTERNATIVE APPROACHES TO MOBILE SYSTEMS 25

When working with a smart device projects, the Toolbox will contain specialized controls, 
and design view will emulate the target device (Figure 15.12).

EXERCISE 15.1

Take the contents details form from the ‘get insurance quote’ use case and write a mobile version 
of it using a mobile web form. Note that when using the mobile controls you will need to replace 
the check box and radio buttons with Selection List controls. Test the page renders correctly by 
using a suitable mobile phone simulator. 

EXERCISE 15.2

Write a mobile version of the buildings details form from the ‘get insurance quote’ use case.

EXERCISE 15.3

Implement a set of mobile web forms that enable a mobile user to enter an account number and 
view the related policy holder details. 

 FIGURE 15.12  Specialized Toolbar options and Design view in a smart 
device project

SmartDeviceProject1 - Microsoft Visual Studio (Administrator)



26 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.6 Localization

Localization means providing the same web application in different languages. It is also 
known as ‘internationalization’, with ‘i18n’ as a commonly used shorthand because there 
are 18 letters between the ‘i’ and the ‘n’. However Microsoft tends to use the term ‘local-
ization’, so we will use this term in this chapter.

Visual Web Developer makes it relatively easy to provide dynamic web pages in different 
languages because you don’t need to replicate all the pages for each language you want to 
support. Instead, resources fi les are provided for each language and used by the running 
web application based on the preference settings of the requesting browser.

 15.6.1 Localized resource fi les

Resource fi les can be created from within Design view (not Source view) by opening a web 
form in an editing window. Once the web form is open, select any of the controls on the 
page and then select ‘Generate Local Resource’ from the ‘Tools’ menu. This will create a 
resource fi le in the App_LocalResources folder of the website. Each web form will have its 
own set of resource fi les, so the fi le name will be based on the fi le name of the web form, 
with an additional ‘resx’ extension. For example, if you generate a resource fi le from a web 
form called ‘MyForm.aspx’, then the resource fi le will be called ‘MyForm.aspx.resx’.

To successfully internationalize a page, all the text (with the exception of the title element) 
needs to be in controls rather than HTML elements. As an example, here is a rewritten 
version of ‘ClaimForm1.aspx’, which we have seen a number of times before in this book. 
However you will note that in this version the headings and page text appear in Label con-
trols rather than in HTML elements. Note also that the labels have been given meaning-
ful names. This is useful when adding internationalization as it makes the labels easier to 
identify. You will also note that we are not using the master page in this example. This is 
because the master page, too, would need to be rewritten to contain only controls rather 
than HTML elements, and would need its own internationalization. To keep this example 
simple, we have not included the master page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” 
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head runat=”server”>
  <title>Make a Claim</title>
 </head>
 <body>
  <form id=”form1” runat=”server”>
   <h1>
   <asp:Label ID=”HeadingLabel” runat=”server” 
    Text=”WebHomeCover isurance claim form”></asp:Label>
   </h1>
   <p>
    <asp:Label ID=”MessageLabel” runat=”server” 
      Text=”Please enter your policy number in the text box below, 
      and also select the type of insurance claim you wish to make. 



15

      Then press the ‘Submit’ button”>
    </asp:Label>
   </p>
   <div>
    <asp:Label ID=”PolicyNumberLabel” runat=”server”
     Text=”Policy Number: “>
    </asp:Label>
    <asp:TextBox ID=”PolicyNumber” runat=”server”></asp:TextBox>
    <br />
    <asp:RadioButtonList ID=”PolicyType” runat=”server”>
    <asp:ListItem Value=”contents”>Contents Insurance Claim
    </asp:ListItem>
    <asp:ListItem Value=”buildings”>Buildings Insurance Claim
    </asp:ListItem>
    </asp:RadioButtonList>
    <br />
    <asp:Button ID=”SubmitButton” runat=”server” Text=”Submit” />
   </div>
  </form>
 </body>
</html>

When you generate the resource fi le, then all the controls in the form will also be auto-
matically modifi ed to include an additional ‘meta:resourcekey’ attribute. Each of these 
attributes is given a value that identifi es the control with which it is associated. Here is the 
modifi ed ‘ClaimForm1.aspx’ page with the generated ‘meta:resourcekey’ attributes high-
lighted in bold.

 
  NOTE

If you re-generate the resource keys more than once you may fi nd 
the names get out of synch with the names of the controls. You can 
manually edit the resourceKey names if this happens.

<%@ Page Language=”VB” AutoEventWireup=”false” 
CodeFile=”ClaimForm1.aspx.vb” Inherits=”ClaimForm1”
    Culture=”auto” meta:resourcekey=”PageResource1” UICulture=”auto” 
%>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” 
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
 <head runat=”server”>
  <title>Make a Claim</title>
 </head>
 <body>
  <form id=”form1” runat=”server”>
  <h1>
   <asp:Label ID=”HeadingLabel” runat=”server” 
    Text=”WebHomeCover insurance claim form” 

15.6 LOCALIZATION 27



28 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

    meta:resourcekey=”HeadingLabelResource1”>
   </asp:Label>
  </h1>
  <div>
   <p>
    <asp:Label ID=”MessageLabel” runat=”server” 
     Text=”Please enter your policy number in the text box below,
     and also select the type of insurance claim you wish to make. 
     Then press the ‘Submit’ button”
     meta:resourcekey=”MessageLabelResource1”>
    </asp:Label>
   </p>
   <asp:Label ID=”PolicyNumberLabel” runat=”server” 
    Text=”Policy Number: “
    meta:resourcekey=”PolicyNumberLabelResource1”>
   </asp:Label>
   <asp:TextBox ID=”PolicyNumber” runat=”server” 
    meta:resourcekey=”PolicyNumberResource1”>
   </asp:TextBox>
   <br />
   <asp:RadioButtonList ID=”PolicyType” runat=”server” 
    meta:resourcekey=”PolicyTypeResource1”>
    <asp:ListItem Value=”contents” 
     meta:resourcekey=”ListItemResource1”>
     Contents Insurance Claim
    </asp:ListItem>
    <asp:ListItem Value=”buildings” 
     meta:resourcekey=”ListItemResource2”>
     Buildings Insurance Claim
    </asp:ListItem>
   </asp:RadioButtonList>
   <br />
   <asp:Button ID=”SubmitButton” runat=”server” Text=”Submit” 
    meta:resourcekey=”SubmitButtonResource1”/>
   </div>
  </form>
 </body>
</html>

You will notice that the various ‘Text’ and ‘Value’ attributes (in English) are still included 
in the elements for the controls. However these values can now be overridden by the con-
tents of the resource fi le. If you open up the generated ‘ClaimForm1.aspx.resx’ fi le in an 
editor window, you will see that it contains a series of name � value pairs (Figure 15.13). 
Where there are values already specifi ed for some of these items, such as the text in the 
fi rst label, then those values are listed in the fi le. Where we have not provided values, such 
as the ToolTip entries, the values are blank.

To show that this fi le can override the values that appear in the web form, try changing the 
‘SubmitButtonResource1.Text’ value from ‘Submit’ to ‘Make a Claim’. If you do this and 
then view the page in a browser, you should see that the button text has been changed to 
the value contained in the resource fi le (Figure 15.14).



15

The file that we have created so far will be the default resource file. However in 
order to cater for different languages we need to add other resource files in different 
languages. To specify the language of a resource file, we incorporate the ISO Language 
Code in to the resource file name, between the web form file name and the ‘.resx’ 
extension. For example we might want to provide the web application in French as well as 

 FIGURE 15.13  The contents of the default (English language) resource fi le for 
the fi rst claim form page

 FIGURE 15.14 The web form with the button text being set from the resource fi le

Make a Claim - Windows Internet Explorer

15.6 LOCALIZATION 29



30 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

our default language, which is English. The name of the second resource file would 
therefore be:

ClaimForm1.aspx.fr.resx

 
  NOTE

You do not need to supply the complete language codes. ‘fr’ for 
example would match all the cultural locales that begin with ‘fr’ 
(France, Canada, Belgium, etc.). 

To create additional resource files, simply copy the default resource file in the App-
LocalResources folder, and paste the copy back into the same folder, then rename it to suit 
the required language. 

The content of the copied fi le would be the same set of keys but with values written in the 
chosen language. Figure 15.15 shows the French language resource fi le, with some dubious 
translations, courtesy of Babel Fish (http://babelfi sh.yahoo.com).

 15.6.2 Setting up the browser to test localized pages

To test whether your localized resources are working, you have to change the language 
preferences in your browser. In Internet Explorer you select ‘Tools’ from the menu bar, 
then ‘Internet Options’. In the resulting dialog you press the ‘Languages’ button, which 
will show you the dialog in Figure 15.16. In this dialog you can add new languages (with 
the ‘add’ button) and change their order of preference. In Figure 15.16 we have added 

 FIGURE 15.15 The French language resource fi le, ‘ClaimForm1.aspx.fr.resx’



15

 FIGURE 15.16 The language preferences dialog in Internet Explorer 7

Language Preference

French and moved it to the top of our list of preferences. The browser will now include 
French as its preferred language when it sends HTTP requests. 

 
  NOTE

You have to restart the browser for changes in language settings to 
take effect.

Setting up the language preferences in Mozilla Firefox 3 is very similar. Again we choose 
‘Tools’ from the menu bar, then select ‘Options’ and press the ‘Choose’ button next to the 
‘Languages’ label on the dialog. Figure 15.17 shows the Firefox language dialog. In Opera, 
select ‘Tools’, then ‘Preferences’, then press the ‘Details’ button next to the ‘Language’ 
drop down list.

If we change the language settings and view our claim form in a browser, we will see the 
text properties of the controls appear in French (Figure 15.18).

The localization approach we have described in this chapter is known as’ implicit local-
ization’. There is also an approach known as ‘explicit localization’ which uses global 
resource fi les rather than local ones. For more information on localization, see the article, 
‘Walkthrough: Using Resources for Localization with ASP.NET’, at http://msdn.microsoft
.com/en-us/library/fw69ke6f.aspx.

15.6 LOCALIZATION 31



32 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

 15.7 Additional features of ASP.NET

One of the exciting aspects of ASP.NET is that it continues to be developed actively by 
Microsoft. There are always new innovations being released for you to learn about. This 
section reviews some of the enhancements that have just been made available at the time 
of writing. Two major new features of ASP.NET which are currently in beta testing are the 

 FIGURE 15.18  A localized web application with the browser language preference 
set to French

Make a Claim - Windows Internet Explorer

 FIGURE 15.17 The language preferences dialog in Mozilla Firefox 3

Languages



15

15.7 ADDITIONAL FEATURES OF ASP.NET 33

MVC (model-view-controller) and Dynamic Data frameworks, which are summarized in 
the following paragraphs. 

MVC is a classic pattern for use in interactive applications. It separates the code into 
three main classes or packages, a model which encapsulates the persistent state, a view 
which provides an abstract view of a window displaying this state, and the controller which 
processes user input and directs it, as appropriate, to the model or view for action. The 
MVC approach is said to promote a clean separation of concerns, thereby enhancing main-
tainability and testability. The ASP.NET MVC framework replaces the post-back event 
handling mechanism currently in use, and instead to a single Controller class. It also 
includes a facility to map URLs directly to MVC actions. Existing ASP.NET web forms are 
treated as MVC style views, so that existing pages can be incorporated unchanged within 
the framework.

ASP.NET Dynamic Data is designed to simplify the development of data-driven applica-
tions by generating automatically the code and mark-up needed to display SQL relational 
database fi elds and records, rather than requiring you to produce it manually. As you have 
recognized, developing pages using the DetailsView, FormView, GridView and ListView 
controls can sometimes be somewhat repetitive, which is why the Dynamic Data frame-
work has been created to boost web application developers’ productivity. Of course, code 
generation does not suit every application, or every application developer, and its use is 
of course optional. In many cases, however, your web applications will be able to take 
advantage of this facility. For example, if a certain database fi eld is defi ned as char(20) and 
non-nullable, then the Dynamic Data framework can automatically generate appropriate 
mark-up for web forms displaying and editing this item on your web pages, and this frees 
up your time to concentrate on other more challenging aspects of your website.

Finally, one of the most signifi cant features of the recent release of ASP.NET was the 
inclusion of Silverlight version 2. It is claimed by Microsoft that Silverlight ‘powers rich 
application experiences and delivers high quality, interactive video across the web and 
mobile devices through the most powerful runtime available on the web.’ That is to say, it 
is a client-side technology delivery rather than more powerful interaction and animation 
than, say, AJAX. This is possible because to view web pages using Silverlight, users must 
fi rst download the Silverlight run-time, which is essentially a version of the .NET run-
time. Thus, with Silverlight client-side interactions and animations can be programmed 
using standard .NET languages and libraries. This is in many ways a more satisfactory exper-
ience for the developer than having to switch to JavaScript code for client-side scripting. 
On the other hand, there are powerful competitors on the client, notably Flash and the 
AIR runtime from Adobe, JavaFX from Sun, and, of course, JavaScript itself, which has 
received a boost from Google’s Chrome browser which includes a performance-enhanced 
version of this standard scripting language. The focus of Dynamic Web Application Devel-
opment using ASP.NET, moreover, has been database-driven websites and so it was decided 
not to cover Silverlight development, itself the topic of a number of other books in its own 
right, in this text.



34 CHAPTER 15 BEYOND EXPRESS EDITION: SPECIAL FEATURES OF VISUAL STUDIO

15

Self Study Questions

 1. In the Express Edition of Visual Web Developer, we have access to the ASP.NET 
Website Administration Tool. What is the alternative tool in the full edition of  Visual 
Studio?

 2. What is the name of a popular third party automated testing tool for Microsoft 
.NET?

 3. Which early example of mark-up for mobile devices was targeted at iMODE 
phones?

 4. Which mobile mark-up is associated with the WAP platform?

 5. Which type of mark-up has been adopted by the Open Mobile Alliance, and is required 
for ‘.mobi’ websites?

 6. What are the control buttons on a mobile phone known as, when mapping these buttons 
to mobile web form controls?

 7. What is the logic behind the term ‘i18n’ to mean internationalization?

 8. What is the preferred term for internationalization when using .NET?

 9. What must you do after changing your language preferences in the browser, in order 
for these changes to take effect?

 10. Which Microsoft technology is similar in intent to Flash?

Exercises

For these exercises you can either continue to use French, or choose some other example 
localized language.

 15.4 Modify the WebHomeCover master page so that all its text elements are replaced by 
controls. Then provide localized text resource fi les for the master page.

 15.5 Convert the localized ‘ClaimForm1.aspx’ page from this chapter to use the local-
ized master page.

 15.6 Localize the other two web forms in the insurance claim web fl ow.

SUMMARY

In this chapter we reviewed a number of features of Visual Web Developer that are only 
available in the full version of the product which is shipped as part of Visual Studio. We 
looked at a number of differences in the way the tool provides services such as access 
to database administration tools, and website publishing. We looked at two particular 
areas in detail, where support is not provided in the express edition of the product, 
namely mobile web forms and localization. We concluded the chapter by acknowledg-
ing current developments in .NET including the MVC and Dynamic Data Frameworks, 
and Silverlight.



15

SUMMARY 35

References and further reading

ASP.NET Dynamic Data, Scott Guthrie, Microsoft 2007, 
http://weblogs.asp.net/scottgu/archive/2007/12/14/new-asp-net-dynamic-data-support.aspx
ASP.NET Dynamic Data (offi cial website), http://www.asp.net/dynamicdata/
ASP.NET MVC Framework, Scott Guthrie, Microsoft 2007, 
http://weblogs.asp.net/scottgu/archive/2007/10/14/asp-net-mvc-framework.aspx
ASP.NET MVC Framework, (offi cial website), http://www.asp.net/mvc/
How do we write test automation for ASP.NET, ASP.NET QA Team, 2008
(http://weblogs.asp.net/asptest/archive/2008/09/25/how-do-we-write-test-automation-for-asp-net.
aspx)
Berners-Lee, T. 2004. New Top Level Domains .mobi and .xxx Considered Harmful 
http://www.w3.org/DesignIssues/TLD
Cremin, R. and Rabin, J. 2006. dotMobi Switch On! Web Developer Guide 
http://dev.mobi/fi les/dotmobi_Switch_On_Web_Developer_Guide_1.0_External_Draft.html
Kamada, T., Asada, T., Ishikawa, M. and Matsui, S. 1999. HTML 4.0 Guidelines for Mobile Access, 
http://www.w3.org/TR/NOTE-html40-mobile
McCarron, S., Ishikawa, M., Baker, M., Ishikawa, M., Matsui, S., Stark, 
P., Wugofski, T. and Yamakami, T. 2007. XHTML™ Basic 1.1 W3C Working Draft 
http://www.w3.org/TR/xhtml-basic
Microsoft Team System 2008 Test Edition, http://msdn.microsoft.com/en-gb/vsts2008/test/
default.aspx
OMA. 2006. XHTML Mobile Profi le Approved Version 1.1 http://www.openmobilealliance.org/
release_program/docs/browsing/v2_2-20061020-a/oma-wap-xhtmlmp-v1_1-20061020-a.pdf
Passani, L. 2007. Global Authoring Practices for the Mobile Web. http://www.passani.it/gap/ 
Silverlight 2 in Action, Chad Campbell and John Stockton, Manning 2008.
Walkthrough: Using Resources for Localization with ASP.NET 
http://msdn.microsoft.com/en-us/library/fw69ke6f.aspx




