

3D Game Programming using DirectX 10 and OpenGL’s

Ancillary C++ eBook
By

Pierre Rautenbach

PREFACE 3

Chapter 1
1.1 Preview 7
1.2 Your first program 7
1.3 Basics: 11
1.3.1 Variables 11
1.3.2 Operators 13
1.4 Values by Reference 18
1.4.1 Pointers 18
1.4.2 References 23

Chapter 2
2.1 Preview 26
2.2 The goto statement 26
2.3 The if statement 28
2.4 The if/else statement 31
2.5 The switch Multiple-Selection Structure 31
2.6 The while loop 34
2.7 The do-while loop 35
2.8 The for loop 36

Chapter 3
3.1 Preview 38
3.2 The Function Prototype (declaration) 38
3.3 The Function Definition 39
3.4 Function Recursion 43
3.5 Function Overloading (Polymorphism) 45

Chapter 4
4.1 Preview 49
4.2 Classes and Objects 49
4.3 Access of Class Members 55
4.4 Encapsulation 61
4.4.1 Friends 62
4.4.2 Namespaces 63
4.5 Operator Overloading 64

Chapter 5
5.1 Preview 69
5.2 Inheritance 69
5.2.1 UML Diagrams 69
5.2.2 Public Inheritance 70
5.2.3 A Mention of Private & Protected Inheritance 74
5.2.4 Multiple Inheritance 75
5.3 Polymorphism 80
5.3.1 Ad-Hoc Polymorphism 81
5.3.2 Parametric Polymorphism (Generics) 81

Chapter 6
6.1 Preview 85
6.2 Arrays 85
6.2.1 Sorting of Arrays 89
6.2.2 Array Searching 91
6.2.3 Multi-dimensional Arrays 9

PREFACE

The Ancillary C++ eBook provides a systematic treatment of the C++ programming
language. It lays down fundamental programming knowledge indispensable for any kind
of software development. The ebook consists of a number of language specific
programming topics, with each topic and section explained in a stepwise manner via
code-based examples.

A Word on C++

C++ was designed by Bjarne Stroustrup while working at AT&T Bell Laboratories in the
early 80s. C++ is the successor to the procedural C programming language (originally
called C with Classes). Since its inception, C++ has become one of the most widely
adopted languages, especially within the game and system programming industries.
With procedural languages everything is executed as a sequence of instructions. C++ is
an object orientated language. With object orientation everything is thought of as
objects. All the instructions and procedures are seen as objects – alone standing entities
that can be described as user created types. C++ is thus nothing more than an
extension of C with the added ability to create objects and with additional features such
as operator overloading, virtual functions, templates, exception handling and multiple
inheritance.

C++, as covered in this ebook, conforms to the current ISO/IEC standardised version,
specifically the ISO/IEC 14882:2003. A joint ANSI/ISO (International Standards
Organisation) committee are responsible for this standardisation. The ANSI standard
partitions C++ into two parts: the basic language and the C++ standard library. The C++
standard library consists of an adapted C standard library and the Standard Template
Library, commonly referred to as the STL (a C++ library providing ready to use container
classes, iterators and algorithms – all its components implemented as templates). This
does not in any sense exclude the use of other libraries. The ISO/IEC standard is just in
place to ensure a uniform C++ version. ANSI C++ code has the characteristic of being
compilable on any ISO/IEC compliant compiler.

C++ is most definitely the choice of engine and game programmers. This can easily be
substantiated by looking at the game industry or many of the freely/GPL licensed game
engines available on the Internet – all of them written in C++.

eBook Features

Some of the key features of this ebook include:

- Thorough coverage of American National Standards Institute (ANSI) C++
- Concept of learning by example
- Figures and tables for the representation of properties and concepts
- Numerous cross-platform C++ examples

The reader will be guided though the material in a logical manner accompanied by
constant notes and hints on common programming mistakes, concepts and trends.

Support Materials

All programming examples in this book are complete and all the related source files are
available from the companion website: www.cengage.co.uk/rautenbach.

Source Compilation and Development Setup

Before you can compile and run the included examples, you’ll need a compiler and/or
alternatively an integrated development environment. There are several development
environments available, both free and commercial. An excellent free development
environment is MinGW Developer Studio (www.parinyasoft.com/). It is a cross-platform
C/C++ IDE (Integrated Development Environment) for the GNU C/C++ compiler. On the
commercial side there is Microsoft’s highly acclaimed Visual Studio
(http://msdn.microsoft.com/vstudio/). These development platforms are all-in-one
solutions, each featuring an editor for writing the physical code, several tools useful
during the development process (such as a debugger) and a compiler for building
program executables. Alternatively you can always use a simple text editor such as
TextPad (www.textpad.com/) or Scite (www.scintilla.org/SciTE.html) coupled with a C++
compiler. Such a setup will suffice for the development of a simple “Hello World”
program to a full 40 000 line game engine. When choosing such a text editor, always
choose one that supports a form of syntax highlighting.

The examples provided in this book are 100% cross platform and will compile on any
ANSI compiler. All the C++ examples were tested on Linux and Windows XP/Vista via
the MinGW compiler and Microsoft Visual Studio 2005.

http://www.cengage.co.uk/rautenbach
http://www.parinyasoft.com/
http://msdn.microsoft.com/vstudio/
http://www.textpad.com/
http://www.scintilla.org/SciTE.html

Chapter 1

BASICS

1.1 Preview

Chapter 1 is of key importance as it deals with several basic C++ concepts. This chapter
gives a brief tour of various C++ syntactic constructs (keywords) including some more
advanced topics such as pointer and reference operations. All topics are presented in an
example driven fashion. Chapter 1 also focuses on additional C++ syntax, variables,
expressions, operator precedence and arithmetic operators.

1.2 Your First C++ Program

Since the early days of programming, whenever using a new language for the first time,
it has been customary to print the string “Hello World”. Printing a text message to the
screen is generally a syntactically simple yet purposeful way of introducing a new
programming language. Here is a C++ “Hello World” program:

Program 1.1 – The Hello World tradition

1
2
3
4
5
6

7
8

9
10
11
12
13

/*
=================
HelloWorld.cpp
- My very first program in C++
=================
*/

#include <iostream>
using namespace std; //just ignore it for the moment

int main()
{
 cout << "Hello World!" << endl; //prints the string Hello World
 return 0;
}

Comments // /*…*/

Comments are textual lines ignored by the compiler. Their purpose, as suggested by
their name, is to add meaning to a portion of written code. This might seem unnecessary
in a way, however, just imagine going through a thousand lines of uncommented code
written by someone else and making sense of it all. Comments are thus crucial for

summarising code. They are also an excellent way for keeping track of progress and to
highlight unfinished or buggy sections in a program.

There are two types of comments, the first and oldest is signified by the set: (‘/* */’).
These are called multi-line comments. Everything enclosed between them is ignored
and normally marked green by the code editor. Multi-line comments work as a pair, in
other words, a comment of this type will always start with a slash (‘/’) followed by a star
(‘*’) and the actual comment. Termination of the comment is signalled with a star-slash
(‘*/’).

The second kind of comment is the double slash (‘//’). This is the C++ style comment,
the multi-line comment (‘/* */’) is the old C style; remember, everything supported in C
is supported in C++. The double slash (‘//’) only works for single line remarks.

Include #include

The include directive (‘#include’) is used for the inclusion of header files. This time I
included ‘iostream.h’. The hash sign (‘#’) signals the C++ preprocessor (active during
the compilation process) to include the specified files. The preprocessor is a program
run during the compilation cycle and it is responsible for the transformation of source
code prior to the actual compilation step. Header files are saved with a dot-h (‘.h’) file
extension. Thus, to summarise, the include directive (‘#include’) is used whenever
another source or header file is to be included by the program. Just a note on the
angular brackets (‘< >’) following the include directive; whenever the preprocessor
reads an angular bracket (‘< >’) it looks for the given file in the compiler’s default or user
specified include directories. Custom written header files are included with double-
quotes (‘“ ”’).

Without the inclusion of ‘iostream’ you would not be able to use the standard output
stream object (‘cout’). The ‘cout’ object provides command-line text output to C++
programs; don’t expect to see it that much outside the terminal environment though.

NOTE: Writing ‘#include <iostream.h>’ is perfectly legal, however, the dot-h
(‘.h’) file extension for default headers has been deprecated in C++.

NOTE: In C one would use ’#include <stdio.h>’ instead of ‘#include
<iostream.h>’. Standard textual output, such as Program 1.1’s will then be
generated via the statement ‘printf(“Hello World!\n”)’ instead of ‘cout <<
“Hello World!” << endl’.

NOTE: The two most frequently used preprocessor commands are ‘#include’ and
‘#pragma’.

Main int main()

The entry point of Program 1.1 is given on line 9. This entry point, main(), is a function
required by all C++ programs. A function is just a portion of code performing some
action or task (Program 1.5 contains several functions). The main function is always
called, no matter what.

Braces { }

Braces (‘{}’) indicate the start and end of a code-block. The left-brace (‘{’) denotes a
Begin, with the right-brace (‘}’) indicating an End. Everything contained within these
braces is considered part of whatever lies prior to the first brace. All functions must have
them, even if the function is empty.

Direction operators >> <<

The Line, ‘cout << "Hello World!" << endl’, is the functional unit of this
program, without it program 1.1 would not do anything. The output redirection operator
(‘<<’) is used, as its name suggests, to direct output. In this case it directs output to the
screen. There can be quite a number of these direction operators in such a ‘cout’
statement; for example, the second direction operator writes a new-line to the screen.
The endline (‘endl’) statement is similar to C’s newline escape sequence (‘\n’) – both
of them indicating a line break. Omitting the endline iostream manipulator will cause the
next line of text to be placed right next to this “Hello World” string.

Return types return 0;

A final thought on program 1.1; it would also have worked if I used ‘void main()’
instead of ‘int main()’. The ‘void’ type signals the return of nothing, where ‘int’
indicates the return of an integer – in this case a zero ‘0’. Programmers refer to ‘void’
and ‘int’ as return types. The compiler expects something to be returned whenever a
return type is placed in front of a function name (it generates a compiler error when the
expected type isn’t returned). Program 1.1’s main function returns the value zero
(‘return 0’). Using ‘void’ as a return type means no ‘return’ statement, however,

the ANSI C++ standard forbids this. All ANSI compliant main functions should return an
‘int’.

Compilation and Output

To compile the program, execute the following from within its file location:

 g++ -c HelloWorld.cpp
 g++ HelloWorld.o –o chosen_executable_name

To run the program type:

 chosen_executable_name

It will output the following to the screen:

NOTE: There are various different types of error messages. Compile-time errors are
errors picked up by the compiler during source compilation. Runtime errors occur
during program execution – they are caused by programming bugs, for example.

Example of a runtime error: running out of storage space in an array.

Example of a compile-time error: writing ‘imt main()’ instead of ‘int main()’.
There are of course hundreds of ways to cause compile-time errors, anything from
assigning to comparing variables of different types.

Good, there you go, your very first C++ program. Easy isn’t it? Of course! Just a note on
indentation – it is completely dependant on the programmer’s preference and will define
his/her very own coding style. Just remember that someone else might not be able to
understand a program if its coding style isn’t clear. Also remember, C++ is a case
sensitive language: Main is not the same as main and will generate an error.

1.3 Basics:

Before discussing the next example, let’s have to look at some C++ basics. Basics refer
to the actual language syntax – mainly the C++ alphabet utilised to make words; i.e.

programs and ultimately games. Once you know the words you can make sentences,
paragraphs and so on. If you are unfamiliar with programming in general, it is extremely
important to thoroughly understand this section before moving on to the next. Variables
are the basis of pointer and reference operations (covered in section 1.4). The focus
now will be on variable types, expressions, operator precedence as well as assignment
and increment/decrement operators.

1.3.1 Variables

Variables can be seen as fixed or dynamically creatable storage space. They give a
program the ability to store and manipulate data. Variables have a name and a type.
The type tells the variable what kind of data to store with its name serving as
identification. A variable of type string, for example, cannot hold an integer value and
vice versa.

You define a variable like this:

int numberOfKids;

This variable can also be initialised with a value, either when defining it:

int numberOfKids = 2;

or at a later stage in your program:

numberOfKids = 2;

The variable ‘numberOfKids’ is of type ‘int’, it can thus only contain integer values –
nothing else.

You can define more than one variable in a single line:

int numberOfKids, numberOfDogs;

The above defined variables, ‘numberOfKids’ and ‘numberOfDogs’, have the same
type, namely, ‘int’.

You can also initialise one or both of these variables:

int numberOfKids = 1, numberOfDogs;

By doing this, I have given ‘numberOfKids’ the default value ‘1’ with ‘numberOfDogs’
left uninitialised.

NOTE: You can use any variable name as long as it is not the same as a standard
C++ keyword (main, void, typedef, struct, class, etc).

NOTE: Don’t go crazy when naming your variables. Using variable names such as
‘p434U2R’ is a very bad idea. Stick to clear descriptive variable names for the sake
of your sanity.

NOTE: Every programmer out there has a coding style. This style is developed over
time. There are also standard styles like the Hungarian notation (used by big
companies like Microsoft, for example).

Table 1.1 lists the most common variable types with their corresponding sizes in bits
(one byte equals eight bits) – computer memory is grouped into storage holes, each with
a physical size of 1 byte.

Table 1.1 – The main variable types available

Variable Type Name Value Range
int Integer (32bit) -2 147 483 648 to 2 147 483 647
short Short Integer (16bit int) -32 768 to 32 767
long Long Integer (32bit int) -2 147 483 648 to 2 147 483 647
char Character (8bit) 256 characters
float Floating point (32bit real) 1.2exp38 to 3.4exp38
double Double float (64bit real) 2.2exp308 to 1.8exp308
unsigned int Unsigned Integer (32bit) 0 to 4 294 967 295
unsigned short Unsigned Short Integer 0 to 65 535
unsigned long Unsigned Long Integer 0 to 4 294 967 295
bool Boolean True or False

NOTE: Unsigned variables can only hold positive values; their value range starts at
zero but the variable’s absolute size stays the same as that of its signed counterpart.

NOTE: Very old compilers and computers represented the ‘int’ type as a 16bit
value; it thus had the same value range as today’s ‘short’ variable type. To be on
the safe side, always use ‘long’ when referring to a 32bit ‘int’ and ‘short’ when
referring to a 16bit one (not doing so might lead to strange results when running your
code on different machines).

You can use the ‘sizeof()’ function in C++ to get the size of a specific object. For
example, the following line of code will return the size of the float variable in bytes:

cout << “The float variable is ” << sizeof(float) << “ bytes big”
<< endl;

This line of code generates the following output:

1.3.2 Operators

Operators are a critical component of any programming language seeing as they are
responsible for the programming language’s basic arithmetic functionality. They also
have a specific precedence and evaluation order.

Table 1.2 gives a list of C++ operators along with their order of precedence.
Precedence is order of evaluation. For example, calculating 5*8+7*2+1 yields
(40)+7+(14)+1 which in turn equates to 62.

Table 1.2 – Operators (in order of precedence)

Operator Description
() Brackets
*, /, %, Multiply, Divide, Modulo
+,- Plus, Minus
<, <=, >, >= Smaller than, Smaller or Equal to, Bigger than, Bigger or Equal to
==, != Equals, Not Equals
= Assignment operator

NOTE: Modulo (%) is used to calculate the remainder of integer division. For
example; 17%5 evaluates to 2. Mod is very useful in looping structures (if something
has to be executed every 10th time, you simply execute where x%10 equals 0).

Table 1.3 gives a list of assignment operators and Table 1.4 lists some
increment/decrement operators.

Table 1.3 – Assignment operators

Operator Example Equivalent
%= varName %= 10; varName = varName % 10;
*= varName *= 3; varName = varName * 3;
/= varName /= 2; varName = varName / 2;
+= varName += 9; varName = varName + 9;
-= varName -= 5; varName = varName – 5;

Table 1.4 – Increment/Decrement operators

Operator Example Equivalent
++ (pre) ++varName; varName = varName +1; (increment then use)
++ (post) varName++; varName = varName +1; (use then increment)
-- (pre) --varName; varName = varName - 1; (increment then use)
-- (post) varName--; varName = varName - 1; (use then increment)

Let’s continue with the next example. The basic idea behind this program is to illustrate
variable and operator use. The given program layout is similar to that of Program 1.1.

Program 1.2 – Variables & Expressions

1
2
3
4
5
6

7

8
9
10
11

12
13
14
15

16
17
18
19

20
21

/*
=================
Variables.cpp
- A program demonstrating the use of variables
=================
*/

#include <iostream>

int main()
{
 //variable definitions & some default initializations
 int numberOfKids = 2, numberOfDogs;

 //main program code
 cout << "First printout" << endl;
 //2 endl below so there is a line open before second printout
 cout << "Number of kids: " << numberOfKids << endl << endl;

 numberOfDogs = 4;
 cout << "Second printout" << endl;
 cout << "Number of kids: " << numberOfKids << endl;
 cout << "Number of dogs set to 4: " << numberOfDogs << endl << endl;

 numberOfDogs = 0;
 numberOfKids = numberOfKids + 1; //same as numberOfKids++

22
23
24

25
26
27
28
29

30
31
32

33
34

 cout << "Third printout" << endl;
 cout << "Number of kids with added 1 kid: " << numberOfKids << endl;
 cout << "Number of dogs set to 0: " << numberOfDogs << endl << endl;

 numberOfDogs = numberOfKids;
 numberOfKids += 2; //same as numberOfKids = numberOfKids + 2;
 cout << "Fourth printout" << endl;
 cout << "Number of kids with added 2 kids: " << numberOfKids << endl;
 cout << "Number of dogs set to the previous number of kids: " <<
numberOfDogs << endl << endl;

 cout << "Fith printout" << endl;
 cout << "Number of kids - 3: " << numberOfKids-3 << endl;
 cout << "Number of dogs * 2: " << numberOfDogs*2 << endl;

 return 0;
}

Definitions and Initialisations

On line 11 I define two variables, ‘numberOfKids’ and ‘numberOfDogs’. Both these
variables are of type integer.

On line 16 I assign the value ‘4’ to ‘numberOfDogs’. On line 20 I assign the value ‘0’ to
it and on line 25 I assign the value currently contained within the ‘numberOfKids’
variable to it.

Looking at line 32 you’ll see some arithmetic being performed on the variable
‘numberOfDogs’. Writing ‘numberOfDogs*2’ in the ‘cout’ line multiplies the current
value contained within the variable by ‘2’. Following this calculation, I output the result.

Similar operations can be observed when looking at the ‘numberOfKids’ variable. I just
want to highlight line 26 – notice the increment statement:

numberOfKids += 2;

This is exactly the same as writing:

numberOfKids = numberOfKids + 2;

The same thing can be observed when looking at line 21; the results obtained by writing:

numberOfKids = numberOfKids + 1;

can also be obtained from the statement:

numberOfKids++;

Writing the increment operator (‘++’) after the variable name tells the compiler to first
use the current value stored in the variable, then increment it. In our example’s case it
doesn’t matter whether you write:

++numberOfKids;

or

numberOfKids++;

both will have the same effect. An increment operator in front of the variable name is
called a prefix increment operator while the opposite is called a postfix increment
operator.

NOTE: The assignment (“=”) operator is one of the few operators read from right to
left. Such an operator is called right-associative. Associativity is a mathematical
property held by a binary operation.

Compilation and Output

To compile the program type the following from within its directory:

g++ -c Variables.cpp
g++ Variables.o –o your_name

To run the program type:

your_name

1.4 Values by Reference:

Program 1.2 illustrates the storage of values by means of variables for the purpose of
manipulation and/or the accessing of these values at a later stage. Each of these
values; stored in physical memory locations or cells, are accessible by means of a
specific variable name. This frees us of the technicalities associated with locating data in
physical memory. In program 1.2 I simply call the variable identifier whenever I want to
access the stored data.

Suppose you have a program with two integer variables, ‘int1’ and ‘int2’. Now,
assigning values to these variables (‘int1 = 20’, ‘int2 = 7’) will cause both values
to be written into physical memory. Figure 1.1 shows the memory locations after this
assignment.

Fig 1.1 Variables stored in memory

1.4.1 Pointers

Pointers are variables that store the memory addresses of other variables. They
basically give programs the ability to manipulate data stored in other variables. Just like
variables, pointers also have a name and type.

The address of a variable refers to the location of the physical memory allocated to that
specific variable. This address is like a tag that links the variable to a physical location in
memory.

A pointer can be defined as follows:

int *numberOfKids;

NOTE: All pointers are defined with an asterisk (‘*’).

Pointers can be initialised to a physical memory address. It is also safe programming
practice, when defining a pointer, to initialise it to zero ‘0’ or NULL. Null is a symbolic
constant used in C and C++. A pointer initialised to NULL points to nothing.

Initialisation of a pointer is done in exactly the same way as with variables; after all, it is
just a different kind of variable. Only addresses should be assigned to pointers.

NOTE: No integer, string, char or any other type may directly be assigned to a
pointer.

So why use pointers at all? If pointers can only be assigned addresses, how do you
make them point to the address of a variable to begin with? Easy! There is another
operator called the address operator (‘&’).

Say you have an integer pointer, ‘myVarPtr’, and an integer variable, ‘myVar’. Let’s
first define and initialise them:

int *myVarPtr = NULL; //myVarPtr points to an object of type int
int myVar = 8; //initialise myVar to 8

‘myVarPtr’ points to an object of type ‘int’ and is initialised to NULL while ‘myVar’,
an integer variable, is assigned the value ‘8’.

Now I want ‘myVarPtr’ to point to the address of ‘myVar’, this is achieved by writing:

myVarPtr = &myVar;

That’s it, ‘myVarPtr’ now points to the address of ‘myVar’.

You should use the indirection operator (‘*’) to get the value pointed to by ‘myVarPtr’.
For example: ‘cout << *myVarPtr;’ will print the number ‘8’.

The following program illustrates the basics of pointer operations:

Program 1.3 – Pointer operations

1
2
3
4
5
6

7

8

10
11

/*
=================
Pointers.cpp
- A program that performs pointer operations
=================
*/

#include<iostream>

using namespace std; //ignore for now, will explain later

/*
=================

12
13
14
15
16
17
18
19

20
21
22
23

25

26

27

28

29

30
31
32
33

34
35

36

37

38
39
40
41
42
43
44

45
46

main function
- main program
=================
*/
int main()
{
 short *myVarPtr = NULL;
 short myVar = 8;

 cout << "Printing Initial values given by: " << endl;
 cout << "-------- ------ ------- ----- --" << endl;
 cout << "myVar: " << myVar << endl; //gives the value of variable
 cout << "&myVar: " << &myVar << endl; //gives address of variable in
memory
// cout << "*myVar: " << *myVar << endl; COMPILE ERROR - NOT A
POINTER
 cout << "myVarPtr: " << myVarPtr << endl; //points to nothing, gives
address to what it points
 cout << "&myVarPtr: " << &myVarPtr << endl; //gives address of pointer in
memory
// cout << "*myVarPtr: " << *myVarPtr << endl; RUN TIME ERROR -
DOESN'T POINT TO ANYTHING

 myVarPtr = &myVar; //to point to another variable

 cout << "Printing New1 values given by: " << endl;
 cout << "-------- ---- ------ ----- --" << endl;
 cout << "myVar: " << myVar << endl; //gives the value of variable
 cout << "&myVar: " << &myVar << endl; //gives address of variable in
memory
 cout << "myVarPtr: " << myVarPtr << endl; //gives address to what it points
 cout << "&myVarPtr: " << &myVarPtr << endl; //gives address of pointer in
memory
 cout << "*myVarPtr: " << *myVarPtr << endl; //gives the value to what it
points

 *myVarPtr = 400; //to assign a value

 cout << "Printing New2 values given by: " << endl;
 cout << "-------- ---- ------ ----- --" << endl;
 cout << "myVar: " << myVar << endl;
 cout << "&myVar: " << &myVar << endl;
 cout << "myVarPtr: " << myVarPtr << endl;
 cout << "&myVarPtr: " << &myVarPtr << endl;
 cout << "*myVarPtr: " << *myVarPtr << endl;

 return 0;
}

Output

Pointing to memory

The comments given in the source should explain everything there is to this little
program. It is basically a review of what has already been said about pointers.

I would, however, like to highlight the code from line 27 to 37. Line 29 assigns the
address of ‘myVar’ to the pointer ‘myVarPtr’. As can be seen from the output, ‘myVar’
has a memory address of ‘0x22ff5a’ with ‘myVarPtr’ assigned the address
‘0x22ff5c’. This address assignment is system dependent and both will be different
because both variables exist in different parts of system memory. A pointer’s address
remains constant during its entire lifespan.

Have a look at the last part of the program. The statement:

*myVarPtr = 400;

on line 37 sets the value pointed to, to ‘400’. This causes the value contained within
‘myVar’ to be set to ‘400’.

It is very important not to become confused with the address held by a pointer and the
corresponding value at that address. Pointers can be summarised as follows:

myVarPtr //gives the address of what the pointer points to
&myVarPtr //gives the address of the pointer itself in memory
*myVarPtr //gives the value of what the pointer points to

So why use Pointers? Aren’t variables enough? The answer to the latter question is
shortly no. But unfortunately the usefulness of pointers will not become clear until you
start accessing function and class members. Say you want to send data from one part in
your program to another – which of the following seems better, sending the actual value
or sending a reference to that value? Remember, our ultimate goal is to do state of the
art 3D programming; speed is one of the biggest issues when doing that and using
pointers saves a bit of time every time! Their use will become crystal clear during the
sections on Functions and Classes.

The final object to mention is the delete operator. As seen in program 1.3; a pointer
exists in the same part of memory, ‘0x22ff5c’ in our case, from the moment it’s defined
until program termination. To free up this memory location, you’ll need to make use of
the delete operator at the end of your program. It can be done in the following manner:

delete myVarPtr;

1.4.2 References

There really isn’t that much of a difference between pointers and references. A
reference can be seen as an alias (an alternate name for a variable/object). References
are frequently used with parameter passing and when returning values (fully explained
during the section on functions). References have similar capabilities when compared to
pointers but the syntax used is much more straightforward.

One thing to remember when defining references is that a reference must be initialised
while being defined. Just as important; once you have initialised a reference you cannot
change it.

In program 1.3’s context you can define and initialise a reference by writing:

int &myVarRef = myVar;

NOTE: A reference is defined with an ampersand sign (‘&’) in front of its name.

NOTE: The address of the bitwise AND operator (‘&’) used with variables is not the
same as the reference operator (‘&’). The symbol used to represent them is the only
thing related.

A reference is an alias; hence, everything that happens to the reference happens to the
referenced object. You can protect an object from being changed in such a way by
declaring the reference as constant (using the ‘const’ keyword). This adds a very
interesting attribute to the reference. You can only initialise a reference with a value if it’s
a constant reference. For example:

const int &myVarRef = 9; //the value that it is a reference to cannot change

Program 1.4 takes a closer look at reference operations:

Program 1.4 – Reference operations

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19

21
22
23
25
26
27
28

29

30

31
32
33
34
35
36

/*
=================
References.cpp
- A program that performs reference operations
=================
*/

#include<iostream>

using namespace std;

/*
=================
main function
- main program
=================
*/
int main()
{
 short myVar = 8;
 short &myVarRef = myVar;
 const int &anotherRef = 9; //only const can be initialised with value

 cout << "Printing Initial values given by: " << endl;
 cout << "-------- ------- ------ ----- --" << endl;
 cout << "myVar: " << myVar << endl; //gives value of myVar
 cout << "myVarRef: " << myVarRef << endl; //gives value of myVar
 cout << "&anotherRef: " << anotherRef << endl; //gives value of anotherRef
 cout << "&myVar: " << &myVar << endl; //gives memory address of myVar
 cout << "&myVarRef: " << &myVarRef << endl; //gives memory address of
myVarRef
 cout << "&anotherRef: " << &anotherRef << endl; //gives memory address
of anotherRef

 myVar = 17; //myVar is assigned the integer 17

 cout << "Printing New1 values given by: " << endl;
 cout << "-------- ---- ------ ----- --" << endl;
 cout << "myVar: " << myVar << endl;
 cout << "myVarRef: " << myVarRef << endl;
 cout << "&myVar: " << &myVar << endl;
 cout << "&myVarRef: " << &myVarRef << endl;

37
38

39
40
41
42
43
44

45
46

 myVarRef = 27; //myVarRef hence myVar is assigned 27
// anotherRef = 7; //ERROR - const, the value cannot be changed

 cout << "Printing New2 values given by: " << endl;
 cout << "-------- ---- ------ ----- --" << endl;
 cout << "myVar: " << myVar << endl;
 cout << "myVarRef: " << myVarRef << endl;
 cout << "&myVar: " << &myVar << endl;
 cout << "&myVarRef: " << &myVarRef << endl;

 return 0;
}

Output

In this chapter you were introduced to many of the basic C++ language features. From
standard program layout, data and text output to user input, arithmetic calculations and
even advanced concepts such as pointers and references. Chapter 2 builds on these
concepts, introducing structured programming, flow of control (concerned with the
execution order of statements) and iteration.

Chapter 2

FLOW OF CONTROL AND ITERATION

2.1 Preview

Any computer program consists of several instructions. These instructions are by default
executed in a linear manner (line by line). There are, however, ways to change this
standard flow of control. For example, one method is to suddenly invoke a function. This
will cause the program to jump to and work through the function, returning to its previous
position only after successful execution of the function.

Something useful to remember is that all programs can be written in terms of:

 - Sequential structures (one instruction is executed after the other)
 - Selection structures (if, if/else, switch)
 - Looping structures (for, while, do/while)

Chapter 2 discusses each of these structures in detail.

2.2 The goto statement

The most basic way of interrupting sequential program flow is to use the ‘goto’
statement. It should, however, be noted that the indiscriminate use of ‘goto’ is a really
bad idea. Research done by Bohm and Jacopini in 1966 demonstrated that programs
could be written without ‘goto’ statements. At this time the notion of structured
programming came into effect, becoming synonymous with ‘goto’ elimination.

The ‘goto’ statement makes use of labels to direct flow. A label is placed left to a ‘goto’
statement, followed by a colon (‘:’) after its name. Thus, flow of control is immediately
directed to the labelled position when a ‘goto’ statement is encountered. For example:

yourlabelname: number = number + 1;
goto yourlabelname; //jumps back to previous line

The following program illustrates the use of the ‘goto’ statement.

Program 2.1 – goto
1
2
3
4
5
6

7

8
9
10
11
12
13
14
15
16
17

18

19

20
21

/*
=================
Spaghetti.cpp
- A program illustrating the use of the goto statement
=================
*/

#include<iostream>

/*
=================
main function
- main program
=================
*/
int main()
{
 cout << "Spaghetti code, lets start" << endl;
 goto looplabel;

 cout << "This line of code is skipped completely" << endl;

 looplabel: cout << "We just skipped a line" << endl;

 return 0;
}

Output

Spaghetti wise

The given program starts by printing the text as specified on line 16. It then progresses
sequentially to line 17 where flow of control is interrupted – the program jumping straight
to the label on line 19 and skipping the code on line 18 completely.

2.3 The if statement

The ‘if’ statement allows a program to carry out different actions depending on the
validity of a test condition (for example: are two variables equal, if they are do the
following…).

A basic ‘if’ statement looks this:

if(number1 == number2)

number3 *= number1;

The ‘if’ statement is composed of two parts: the test condition and the body. The body
is only executed if the test is true. If the condition has a value of ‘0’, it is considered false
and the body is skipped. Any non-zero value is considered true, thus resulting in the
execution of the body.

Table 1.2 gives a list of operators for use with ‘if’ statement conditional testing.

NOTE: Do not confuse the assignment “=” operator with the equals operator “==”.

Remember, you can also block statements together within the body of an ‘if’ statement.
Doing so will lead to the execution of more than one statement.

An ‘if’ statement can also test for more than one conditionals at a time, this is done via
the grouping of logical operators.

Logical operators (Boolean operators) evaluate to either TRUE or FALSE; examples
include:

! - Logical NOT
&& - Logical AND
|| - Logical OR

The following ‘if’ statement combines two test conditions by means of the logical AND
operator:

if(number1 == 1 && number2 == 1)
number3 *= number1;

The body of this loop is only executed if both numbers are equal to ‘1’.

The next ‘if’ statement combines two test conditions via a logical OR operator:

if(number1 == 1 || number2 == 1)
number3 *= number1;

The body of this loop is executed if either one of the numbers or both are equal to ‘1’.

The following ‘if’ statement uses the logical NOT operator:

if(number1 != 1)

number3 *= number1;

The body of this loop is executed unless the test condition equals ‘1’.

If statements can also be nested (the second if statement is only executed if the first one
evaluates to true):

if(number1 != 1)
if(number2 >= 17)

number3 *= number1;

As mentioned previously; all TRUE values evaluate to ‘1’ whereas all FALSE values are
evaluated to ‘0’. Any nonzero number is thus TRUE. The following examples illustrate
this:

NOT (!)
A !A
0 1
Nonzero 0

AND (&&)
A B A&&B
0 0 0
0 Nonzero 0
Nonzero 0 0
Nonzero Nonzero 1

OR (| |)
A B A| |B
0 0 0
0 Nonzero 1
Nonzero 0 0
Nonzero Nonzero 1

Program 2.2 plays around with different ‘if’ statement configurations. It clearly
illustrates the practical implementation of the discussed concepts.

Program 2.2 – Variations on if

1
2
3
4
5
6

7

/*
=================
TheIfStatement.cpp
- A program showing various if statements
=================
*/

#include<iostream>

8
9
10
11
12
13
14
15
16
17

18
19
20

21
22
23

24
25
26
27

28

29
30

31
32
33
34

35
36

37

38
39
40
41

42

43
44

45
46

/*
=================
main function
- main program
=================
*/
int main()
{
 int someNumber = 7;
 short anotherNumber = 8;

 //basic if
 if(someNumber >= 5)
 cout << endl << "someNumber = " << someNumber << " thus
bigger or equal to 5" << endl;

 //basic if
 if(someNumber != 8)
 cout << "someNumber is not equal to 8" << endl << endl;

 //the OR (||) operator
 if((someNumber != 7)||(anotherNumber == 8))
 {
 cout << "the OR operator test if one of the conditions are valid " <<
endl;
 cout << "someNumber is false but anotherNumber is true " <<
endl;
 cout << "thus causing this line to get printed" << endl << endl;
 }

 //the AND (&&) operator
 if((someNumber == 7)&&(anotherNumber == 8))
 {
 cout << "the AND operator test if both conditions are valid " <<
endl;
 cout << "clearly they are " << endl;
 cout << "if one wasn't true you wouldn't be reading this" << endl <<
endl;
 }

 //the AND (&&) operator with a NOT (!) - NOT PRINTED
 if((someNumber == 7)&&(anotherNumber != 8))
 {
 cout << "the AND operator test if both conditions are valid " <<
endl;
 cout << "clearly they are not since anotherNumber is in fact 8 " <<
endl;
 cout << "THIS LINE ISN'T PRINTED" << endl << endl;
 }

 return 0;
}

Output

2.4 The if/else statement

The ‘if’ statement is used to control whether a statement is executed or not. Coupling it
with ‘else’ allows you to execute something else if your original test condition wasn’t
met.

An ‘if/else’ statement has the following basic structure:

if(number1 == number2)

number3 *= number1;
else
 number1 = number2;

2.5 The switch Multiple-Selection Structure

The ‘switch’ multiple-selection structure can be considered the ‘if’ statement’s big
brother. The main difference between them is that where ‘if’ evaluates a single value,
‘switch’ allows for the branching on several different values. ‘switch’ structures
normally consist of several ‘case’ labels, ‘break’ statements and one ‘default’ case.

A basic ‘switch’ structure is illustrated here:

switch(userInput)
{

case 1:
 //some statement

break;

case 2:
{ //grouping can be done!
 //some statement
 //another statement

 }

break;

case 3 : case 4:
/*more than one statement can be concurrently
tested*/

break;

default: //handles anything else entered
cout << "Incorrect choice, enter
 choice again" << endl;

break;
}

The first ‘case’ matching the given ‘switch’ value is executed. Execution stops at the
first ‘break’. The next ‘case’ will also be executed if the subsequent ‘break’ statement
is missing. The ‘default’ case can be left out but its inclusion generally ensures the
handling of incorrect input.

NOTE: The switch structure can only be used in the testing of integers and
characters.

The following program creates a basic selection menu. The ‘switch’ statement tests
the user’s input and prints a message according to the option selected.

Program 2.3 – An example using switch

1
2
3
4
5
6

7

8
9
10
11
12
13
14
15
16

17
18

/*
=================
Switch.cpp
- A program using the switch statement to see what menu option the user selected
=================
*/

#include<iostream>

/*
=================
main function
- main program
=================
*/
int main()
{
 short userInput;

 //menu printed to screen
 cout << endl << "******Please select the desired option******" << endl;

19
20
21
22
23
25

26

27
28

29
30
31
32

33
34
35

36
37
38

39
40
41
42
43
44

45
46

47
48
49
50

51
52

 cout << "**" << endl;
 cout << "* 1: New Game *" << endl;
 cout << "* 2: Load Game *" << endl;
 cout << "* 3: Options *" << endl;
 cout << "* 4: Exit Game *" << endl;
 cout << "**" << endl;

 cin >> userInput; //variable used to store the users input (controlling
expression)

 //the switch selection structure testing the controlling expression
 switch(userInput) //the value of the expression is compared with each case
label
 {
 case 1:
 cout << "Option 1, New Game, selected..." << endl;
 break;

 case 2:
 cout << "Option 2, Load Game, selected..." << endl;
 break;

 case 3:
 cout << "Option 3, Options, selected..." << endl;
 break;

 case 4:
 {
 cout << "Option 4, Exit Game, selected..." << endl;
 cout << "Thank you for playing!" << endl;
 }
 break;

 case '\n': case' ': //ignore a newline(ENTER) or space as input
 break;

 default: //handles anything else entered
 cout << "Incorrect choice, enter choice again" << endl;
 break;
 }

 return 0;
}

Output (on selection of option 4)

NOTE: It’s a good idea to add a case statement testing for newline (‘\n’) and space
characters (‘ ‘).

2.6 The while loop

Looping is an essential part of most programs. A group of instructions executed
repeatedly are referred to as a loop. A ‘while’ loop is a repetition structure used to
repeat a sequence of statements or actions. This sequence of statements is repeated
infinitely, or until the starting condition becomes false.

Program 2.4 – An example for using while

1
2
3
4
5
6

7

8

9
10
11

12

13
14
15
16
17
18

/*
=================
While.cpp
- A program using the while statement, also features the use of the 'mod' operator
=================
*/

#include<iostream>

using namespace std;

int main()
{
 int k, i; //two counters

 k = 1; //initialise k to 1

 while(k++ <= 300) //increment k and execute the nested if statement 300 times
 {
 if (k%100 == 0) //for every 100th print k
 cout << k << endl;
 }
}

Output

Loop structure

Our starting condition, ‘k’, is initialised to ‘1’ on line 12. This is followed by the actual
‘while’ structure on line 13. The ‘while’ loop starts with:

while(k++ <= 300)

The starting condition is incremented during each loop cycle (via the ‘k++’ statement).
This condition is true until ‘k’ has a value greater than ‘300’; at which point the loop will
terminate.

Contained within the while loop is the following ‘if’ statement:

if (k%100 == 0)

This statement prints every 100th value of ‘k’.

2.7 The do-while loop

The ‘do-while’ loop is another repetition structure used to repeat a sequence of
statements or actions. This sequence of statements is repeated infinitely, or until the end
condition becomes false. Thus, a ‘do-while’ loop will always execute at least once,
regardless of whether our test condition is true or not.

The following example is nearly identical to the previous one, only here the ‘while’
structure has been modified into a ‘do-while’ repetition structure.

Program 2.5 – An example using do-while

1
2
3
4
5
6

7

8

9
10
11

12

13
14
15
16
17
18
19

/*
=================
DoWhile.cpp
- A program using the do-while statement, also features the use of the 'mod' operator
=================
*/

#include<iostream>

using namespace std;

int main()
{
 int k, i; //two counters

 k = 1; //initialise k to 1

 do
 {
 if (k%100 == 0) //for every 100th print k
 cout << k << endl;
 }
 while(k++ <= 300); //increment k and execute the nested if statement 10 times
}

Output

2.8 The for loop

You can use ‘for’ loops if you want to evaluate a sequence of expressions for a
specified number of times. A ‘for’ loop consists of three elements, a control variable, a
continuation condition and a control variable counter. The control variable is
incremented and compared to the continuation condition during each loop iteration. The
loop terminates when the continuation condition is satisfied.

Program 2.6 – An example using the for loop
1
2
3
4
5
6

7

8

9
10
11
12
13
14
15

/*
=================
For.cpp
- A program using the for repetition structure
=================
*/

#include<iostream>

using namespace std;

int main()
{
 for (int i = 1; i <= 3; i++)
 {
 cout << i << endl;
 }
}

Output

Initialisation, checking and incrementing

The ‘for’ loop on line 11 initialises the control variable counter to ‘1’. The loop executes
as long as ‘i’ is less than or equal to ‘3’ with ‘i ' incremented by ‘1’ during each iteration.

This chapter concentrated on C++ control structures. The next chapter deals with
functions – the very core of the modularity concept (building large programs from
smaller units).

Chapter 3

FUNCTIONS

3.1 Preview

You already know something about functions; for instance, Program 1.1 introduced the
‘main’ C/C++ entry function. Some functions call themselves recursively (over and over)
to solve problems that require the continuous evaluation of results. The game at the end
of Chapter 6 makes use of function recursion for input control. This chapter will
investigate both recursive functions as well as functions that are called once, either from
the ‘main’ function or from another function.

3.2 The Function Prototype (declaration)

When you declare a function, you’ll need to create a prototype for it. This prototype
consists of a return type (float, int, void, etc) and the function parameters (variables that
will be passed to the function).

Here is an example of what a function prototype could look like:

void FunctionOne(string str)

The given prototype’s ‘void’ keyword indicates that the function doesn’t return anything.
‘FunctionOne’ is the function name used to call the function. This can be done either
from within the function itself (recursion) or from another function such as the main
function. The function name is followed by brackets (‘()’) with the function parameters
contained within. These function parameters are passed from somewhere else in the
program.

The function prototype doesn’t have to list the parameter variable name(s); for example:

void FunctionOne(string)

3.3 The Function Definition

A function definition encapsulates the code necessary for proper operation of a function:

void FunctionOne(string &str)
{

cout << “func 1”;
}

This function accepts a reference to a string ‘str’, does nothing with it and prints the
line to the screen. This is, of course, quite a pointless function; why have a
reference to a string as a parameter in the first place and never use it? Well, it’s just an
example illustrating the proper definition of a function.

Now, say you have declared a string, ‘userText’, then you’ll be able to call
‘FunctionOne’ from anywhere in your program as follows:

string userText = “some default string”; //variable string
FunctionOne(userText); //calls the function with given string

Passing by value occurs when you call a function directly with a variable as a parameter.
A local copy of that variable is made and the original cannot be changed. Passing by
reference can be accomplished through the use of either pointers or references. The
function can now manipulate the data contained at the given address, thus changing the
value of the original variable. The example demonstrates both options.

You will usually send a couple of values to the function for it to perform some calculation
or task, finally returning the result. For example, when the result is an integer you will
pre-empt the function name with the ‘int’ keyword. Have a look at Table 1.1 for the
most common types available.

Example of a function with a return type:

int FunctionNumber(int number)
{

number = number + 2;
return number;

}

Program 3.1 shows a couple of functions in action. The program looks at the direct
passing of values, the passing of values by reference and the passing of values via
pointers.

Program 3.1 – Functions:
1
2
3
4
5
6

7

8

10
11
12
13
14
15
16
17

18
19
20
21
22
23
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52

/*
=================
Functions.cpp
- A program that illustrates the use of functions
=================
*/

#include<iostream>

using namespace std;

/*
=================
FUNCTION PROTOTYPES
=================
*/
void FunctionRef(short &);
void FunctionPtr(short *);
void FunctionVal(short);

/*
=================
FunctionRef function
- takes a reference as parameter
=================
*/
void FunctionRef(short &someVarRef)
{
 cout << endl << "Calling FunctionRef, passing a reference" << endl;
 someVarRef *= 2;
 cout << "reference to myVar*2 = " << someVarRef << endl;
}

/*
=================
FunctionPtr function
- takes a parameter passed as pointer
=================
*/
void FunctionPtr(short *someVarPtr)
{
 cout << endl << "Calling FunctionPtr, passing a pointer" << endl;
 *someVarPtr *= 3;
 cout << "pointer to myVar*3 = " << *someVarPtr << endl;
}

/*
=================
FunctionVal function
- takes a parameter passed by value
=================
*/
void FunctionVal(short someVar)
{
 cout << endl << "Calling FunctionVal, passing a value" << endl;
 someVar *= 4;

53
54

55
56
57
58
59
60
61
62
63
64
65
66

67
68

69
70

71
72

 cout << "myVar*4 = " << someVar << endl;
}

/*
=================
main function
- main program
=================
*/
int main()
{
 short myVar = 20;

 FunctionVal(myVar); //passing by value
 cout << "myVar after passing by value = " << myVar << endl;

 FunctionRef(myVar); //passing by reference
 cout << "myVar after passing by reference = " << myVar << endl;

 FunctionPtr(&myVar); //passing by reference using a pointer
 cout << "myVar after passing by reference = " << myVar << endl;

 return 0;
}

Output

Passing by Value

Have a look at the function, ‘FunctionVal’, on line 49. It is clear, from its definition,

void FunctionVal(short someVar)

that only one parameter is received. This parameter, ‘someVar’, is passed by value.

‘FunctionVal’ multiplies the received parameter by ‘4’. The ‘short’ integer, ‘myVar’,
is declared and initialised to ‘20’ on line 63 of the main function. I call ‘FunctionVal’ on
line 65 using this ‘myVar’ variable as follows:

FunctionVal(myVar);

A local copy of the ‘myVar’ variable is made within ‘FunctionVal’; this copy is called
‘someVar’. ‘someVar’ is local to ‘FunctionVal’ (no changes made to it are reflected
back to ‘myVar’, as can be seen from the output).

Passing by Reference

Look at ‘FunctionRef’ on line 12. You will notice, upon examination of its definition:

void FunctionRef(short &someVarRef)

that it receives one parameter passed by reference (specified via the reference operator
(‘&’) in front of the parameter ‘someVarRef’. This function is invoked via the function
call:

FunctionRef(myVar);

on line 67.

‘FunctionRef’ multiplies the reference parameter by ‘2’. Because I am dealing with
references, I indirectly multiply variable ‘myVar’ in the main program by ‘2’. The variable
‘myVar’, initially set to ‘20’, is permanently changed to ‘40’ after execution of
‘FunctionRef’. I call (invoke) ‘FunctionRef’ on line 67 with the ‘myVar’ variable:

FunctionRef(myVar);

This is where the use of references really becomes apparent. Look at line 69 where I
pass a reference using a pointer. With pointers you have to pass the address of the
variable, ‘FunctionPtr(&myVar)’, making the syntax a bit more complicated.
Furthermore, by looking at ‘FunctionPtr’ on line 37, you can see the need to
dereference the pointer before it can actually be used. The end results from using a
reference or pointer is identical; using references makes your code just a little bit easier
to read, perhaps saving you hours of debugging time later.

3.4 Function Recursion

I previously touched on the topic of recursion. Recursion is an extremely useful
programming tool and as such warrants full coverage. A recursive function is a function
that calls itself, or that is called directly or indirectly by another function.

To solve a certain problem, the function is written in such a way as to call itself
continuously, every time with a simpler version of the original problem. This situation
continues until the basis case is encountered. The basis case is the most accurate
solution to the given problem.

A general issue with recursion is speed. This is mainly due to the same instruction being
executed over and over again with only a slight reduction to the problem – more and
more memory and time are consumed due to a copy of the function being made during
each function call. The most likely situation where you’ll implement recursion is where
the result of a previous computation is needed for the next.

NOTE: Recursion can take place indefinitely. This happens when the problem isn’t
reduced in such a manner that it will lead to the basis case.

The best way to understand recursion is to see it in action. Let’s write a function utilising
recursion. Program 3.2 has a function called ‘Power’. This function takes two integers,
‘p’ and ‘q’, as input parameters and returns the result of ‘p’ to the power of ‘q’ (‘p’ and ‘q’
are passed by value). The user inputs the numbers ‘p’ and ‘q’ and the program prints the
result. The program continues until the user enters a power of ‘0’.

Program 3.2 – Recursive Function

1
2
3
4
5
6

7

8
10
11
12
13
14

15
16
17
18
19
20
21
22
23
25

/*
=================
RecursivePower.cpp
- A program illustrating the use of recursion
=================
*/

#include<iostream>

/*
=================
FUNCTION PROTOTYPE
=================
*/
int Power(int, int, int);

/*
=================
Power function
- takes three parameters passed by value
@ answ: is the answer of the calculation
@ p: is the base of which we calculate the power
@ q: is the power
=================
*/
int Power(int answ, int p, int q)

26
27
28
29
30

31
32
33
34
35
36
37
38
39

40
41
42

43
44

{
 if (q != 0) //base case q = 0
 return Power(answ * p, p, q - 1); //recursive call
 else cout << "= " << answ << endl; //prints the result when base case is met
}

/*
=================
main function
- main program
=================
*/
int main()
{
 int base, power, answ=1;

 cout << "Enter the number and then the power, eg: 5 3 > ";
 cin >> base >> power; //reads the user input into the variables
 Power(answ, base, power); //calls the function Power for the first time

 return 0;
}

Output

More than one Parameter

The function, ‘Power’ (line 25), receives three parameters (explained in the comments
given on lines 19 to 21). The ‘Power’ function has a base case of ‘0’; the function is thus
called over and over until the base case, q, equals ‘0’. Say the user entered ‘5’ to the
power of ‘3’, then the following arithmetic will be performed:

First Call: 1 * 5 ► q – 1 = 3 – 1= 2

Second Call: 5 * 5 ► q – 1 = 2 – 1= 1

Third Call: 25 * 5 ► q – 1 = 1 – 1= 0 ► Base Case

Fourth Call: q = 0 thus print the result of ‘answ’ = 125

3.5 Function Overloading (Polymorphism)

In short, function overloading or polymorphism refers to the situation where you have
two functions with exactly the same name but different parameters. This term
polymorphism is frequently used to describe an object that adapts itself to the nature of
other objects.

Consider the following function prototypes, signifying three overloaded functions:

int OverloadedFunc(int)
int OverloadedFunc(int, int)
int OverloadedFunc(int, long)

‘OverloadedFunc’ is overloaded three times (notice the differing function parameters
which result in different function signatures). The third ‘OverloadedFunc’ will be called,
for example, when ‘OverloadedFunc’ is invoked with ‘int’ and ‘long’ as parameter
types.

NOTE: You cannot have two functions with identical names and parameter types but
with different return types.

The idea behind overloading is to make functions more user-friendly. User friendliness
translates into functions that are easier to use and read. This frees the programmer from
worrying about which function to call when dealing with varying variables. If you didn’t
use overloading you would have had to create three separate functions for the previous
example.

Program 3.3 demonstrates the use of polymorphic functions.

Program 3.3 – Polymorphic Functions

1
2
3
4
5
6

7

8
10
11
12
13
14
15
16

17
18
19
20

/*
=================
Overloader.cpp
- A program illustrating the use of polymorphism
=================
*/

#include<iostream>

/*
=================
FUNCTION PROTOTYPES
=================
*/
int Divide(int);
float Divide(float);
double Divide(double);

/*
=================
int Divide function
- takes 1 integer parameter passed by value and returns integer value

21
22
23
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61

62
63
64

65
66
67
68

69
70
71
72

@ toDivide: the number to be divided
=================
*/
int Divide(int toDivide)
{
 return toDivide/2;
}

/*
=================
float Divide function
- takes 1 float parameter passed by value and returns float value
@ toDivide: the number to be divided
=================
*/
float Divide(float toDivide)
{
 return toDivide/2;
}

/*
=================
double Divide function
- takes 1 double parameter passed by value and returns double value
@ toDivide: the number to be divided
=================
*/
double Divide(double toDivide)
{
 return toDivide/2;
}

/*
=================
main function
- main program
=================
*/
int main()
{
 int intNumber = 17;
 float floatNumber = 17;
 double doubleNumber = 17;

 int dividedInt;
 float dividedFloat;
 double dividedDouble;

 //function calls
 dividedInt = Divide(intNumber);
 dividedFloat = Divide(floatNumber);
 dividedDouble = Divide(doubleNumber);

 //print the results
 cout << "dividedInt: " << dividedInt << endl;
 cout << "dividedFloat: " << dividedFloat << endl;
 cout << "dividedDouble: " << dividedDouble << endl;

73
74

 return 0;
}

Output

Overloading in action

The given program overloads the ‘Divide’ function for ‘integer’, ‘float’ and
‘double’ parameters, respectively. The different prototypes are given on lines 14 to 16
with the corresponding definitions on lines 25 to 50.

The three ‘Divide’ functions have the purpose, that is to divide the passed parameter
by ‘2’. The ‘float’ and ‘double’ ‘Divide’ functions return a real number with the
‘integer’ version returning the chopped off value, specifically ‘8’ instead of ‘8.5’ (the
‘integer’ type cannot store real values).

The next chapter is all about classes – this is also where I will look at the implementation
of polymorphism in much more detail.

Chapter 4

CLASSES: OBJECT-BASED PROGRAMMING

4.1 Preview

Classes and objects are pivotal to object-orientated programming. Object-orientation is
used to design programs via the definition of objects, inter-object relationships and
object-centric properties. It is a widely embraced programming paradigm. Developing
programs via object-orientation (known as object-orientated programming (OOP)) allows
for easy maintenance and the trouble free implementation of complex methods and
types – not always clearly understood nor implemented when using a purely procedural
language such as C. Object-orientated programming increases software productivity,
reusability and the quality of the software produced. This chapter investigates object-
based programming. Object-based programming is a subset of object-orientated
programming in that it doesn’t make use of inheritance. Object-based programming
features classes, objects, encapsulation and operator overloading. The Object-
orientated paradigm adds inheritance and polymorphism to the elements supported by
object-based programming. Polymorphism links up with the programming paradigm of
generics. Generic programming, as it is called, introduces function templates and class
templates.

4.2 Classes and Objects

Classes are probably one of the most important characteristics of C++. The class
structure is what gives C++ its object-based/orientated quality. Without it there really
wouldn’t be any real reason to use C++ over C. The class data structure gives the C++
programmer the ability to create custom types. You are, of course, already familiar with
the common C++ types such as ‘int’, ‘float’, ‘string’, etc. Then why, you might ask,
do we need more data types? The answer lies with the need to solve real world
problems. Let’s say you want to create a fight simulator, then you can use classes to
define custom variables for the representation of gauges, throttle control, landing gear
status, etc. These new types, defined by classes, are called ADTs or Abstract Data
Types. Classes facilitate the creation of objects consisting of attributes and operations.
Attributes of an object are represented as data members. Operations on the other hand
are represented as member functions. These member functions are similar to the

functions discussed in Chapter 3. Member functions are invoked by messages sent to
objects. Data members are nothing more than variables used in the definition of member
functions. All these members are guarded via a form of access control.

Another concept associated with object-based/orientated programming is encapsulation.
Encapsulation, or information hiding, allows one to specify either ‘public’, ‘private’ or
‘protected’ visibility for the members of a class. Public members are accessible from
anywhere within the program. Private members are only accessible from the same
class’s member functions or from other classes and their member functions explicitly
declared as friends of the class. Protected members are accessible by all derived
classes (classes inheriting the base, or original, class); protected members are also
accessible by friends of the class as well as the class itself.

NOTE: A class definition terminates with a semicolon. Failure to do so will result in a
syntax error.

You will now look at a complete object-based C++ program.

Program 4.1 – The object-based programming

1
2
3
4
5
6

7
8

9

10

11
12
13
14
15
16
17
18
19
20
21

22

/*
=================
Date.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef DATE_H
#define DATE_H

#include <iostream> //no need to include it anywhere else where Date.h is included

using namespace std;

class Date
{
 public: //public access modifier
 Date();
 void setDate(int, int, int);
 void printDate();
 private: //private access modifier
 int year;
 int month;
 int day;
};

#endif

23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67

68

69
70
71

/*
=================
Date.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "Date.h"

/*
=================
- Data constructor initializes each data member to 0
- Is always called, thus ensures all Date objects are in a consistent state
=================
*/
Date::Date()
{
 day = 0;
 month = 0;
 year = 0;
}

/*
=================
- Sets new Date value, note: no validity checking is done
=================
*/
void Date::setDate(int day_, int month_, int year_)
{
 day = day_;
 month = month_;
 year = year_;
}

/*
=================
- Prints the date in international format
=================
*/
void Date::printDate()
{
 cout << year << "-" << month << "-" << day << endl;
}

/*
=================
main.cpp
Main entry point for the Date application
=================
*/

#include "Date.h"

int main()
{
 Date d; //instantiate object d of class Date

72
73

74
75
76

77
78

 cout << "The initial date is: ";
 d.printDate(); //calls the values as initialised by the default constructor

 d.setDate(2005, 12, 11);
 cout << "The new date is: ";
 d.printDate();

 return 0;
}

NOTE: The specification and implementation of C++ programs are separated.
Program 4.1 consists of three physical files: Data.h (the specification), Data.cpp (the
implementation) and main.cpp (the application’s entry point).

Compilation and Output

Definition

The ‘Date’ class definition starts with the ‘class’ keyword. You contain a set of
statements within the body of the class, specified by left (‘{‘) and right (‘}’) braces. A
class definition is terminated with a right brace followed by a semicolon (‘;’).

The conditional compilation directives: ‘#ifndef’, ‘#define’ and ‘#endif’ are used on
lines 7, 8 and 22 independently. In the example program’s context, this directive
grouping ensures that if ‘Date.h’ has already been included, then it will not be included
again, otherwise it will be included (thus preventing multiple inclusions of the ‘Date.h’
header file). You’ll generally use conditional compilation directives to facilitate cross-
platform compatibility.

The ‘Data’ class definition contains three ‘private’ integer members: ‘year’, ‘month’
and ‘day’. The default class access specifier is ‘private’, so you could have written the
class definition with the integer members at the top of the class definition (omitting the
‘private’ access modifier – which is default unless you specify something else, e.g.
‘public’ or ‘protected’):

class Date
{

 //members are private by default
int year;

 int month;
 int day;

public: //public access modifier
 Date();
 void setDate(int, int, int);
 void printDate();
};

Member Prototypes

Three member functions are defined on lines 14, 15 and 16 (all publicly visible). The first
member function definition is for the default constructor of the class,

Date();

The default constructor is a constructor without any arguments.

NOTE: The default constructor is generated by the compiler if none has been
specified.

A constructor is a type of member function, more specifically; it is a member function
with the same name as the class. A constructor is invoked each time the program
creates an object of the class.

On line 36 a constructor is used to initialise each data member to ‘0’.

NOTE: A constructor isn’t assigned a return type and there is no restriction on its
functionality.

The declaration of our ‘setDate’ and ‘printDate’ member functions,

void setDate(int, int, int);
printDate();

on lines 15 and 16, are used by the clients of this class to manipulate the class data, in
essence the integer members ‘year’, ‘month’ and ‘day’. These member functions allow
the client’s code to interact with the objects of the class.

Using the class

Let’s look at the usage of this ‘Date’ class. A single object, ‘d’, is instantiated on line 71.
This object is of type ‘Date’. The ‘Date’ constructor is called upon object instantiation,
leading to the initialisation of each of the private data members ‘year’, ‘month’ and
‘day’.

In the class implementation, ‘Date.cpp’, notice our usage of the scope resolution
operator (‘::’). It is used to refer to a class member function rather than a local one. In
practical terms this just means that if you write ‘classname::function()’, then you
are referring to a member function located in the declaration of ‘classname’. In our
program, on lines 47 to 52, I define the member function ‘setDate’ externally via this
scope resolution operator.

void Date::setDate(int day_, int month_, int year_)
{
 day = day_;
 month = month_;
 year = year_;
}

There isn’t really that much more to say about this little program, except perhaps for the
code on lines 73 to 76:

d.printDate();

prints the data members as initialised by the constructor.

NOTE: You can also use pointers and references to access member functions. This
is discussed and illustrated in section 4.3.

The following section of code:

d.setDate(2001, 12, 11);
cout << "The new date is: ";
d.printDate();

calls the member function ‘setDate’ with a date (year, month, day) as parameter,
printing the changed output via the ‘printdate’ member function.

NOTE: Using information hiding techniques, such as those promoted by access
modifiers, improve program modifiability and readability.

It is also important to note that function variables (variables defined in a member
function) are only visible in the containing function – no other function or class can gain
access to them, ever. For example, say you add a function variable, ‘int x’, to the
‘printDate’ member function:

void Date::printDate()
{
 int x;
 x = 7;
 cout << year+x<< "-" << month << "-" << day << endl;
}

then ‘x’ will only be visible and accessible by the ‘printDate’ function.

The ‘printDate’ function will now print the year value to the screen, but added to it the
value 7. You can pretty much do anything to this function variable as long as it is within
the ‘printDate’ member.

4.3 Access of Class Members

Every class has a specific scope. This scope is defined by data members (class
variables) and member functions (those functions unique to a class). When working
within the scope of a class, class members are accessed via the class’s member
functions. When working from outside the class’s scope, you can reference the class
members via an object name, a pointer to an object or a reference to an object.

Accessing a class object via the object’s name, a reference to the object or via a pointer
is best illustrated in the example below. These three different access techniques are
known as object handles. The dot member selection operator (‘.’) is used in conjunction
with the object name. This selection operator can also be combined with an object
reference to access the object’s members. The alternative arrow member selection
operator (‘->’) is used in combination with a pointer to the object.

So why use different methods if the end result is always the same? The answer lies with
the fact that class instances can either be heap dynamic or stack dynamic. Class
instances are referenced through pointers when heap dynamic and directly via value if
stack dynamic. This use becomes clear when looking at the storage bindings of
variables. As you know by now, for a variable to exist it must be bound to a memory cell,
this memory cell is acquired from the computer’s available physical memory. This is the
process of allocation. Deallocation is the exact reverse process – freeing the bounded
memory cells and thus making it available for future use. The heap and stack are two
different memory areas (in addition to the global name space, registers and the code
space memory areas).

The code space is used for code with the global namespace used for all our global
variables. The stack is primarily used for function parameters and local variables and its
associated registers are used for the internal organisation of the stack. The heap is very
important because of nearly all our free memory being allocated to it. Thus, by using the
different object handles, you can control the memory binding process.

Heap memory allocation is advantageous due to its persistency. For example, when a
member function terminates, its associated variables are not destroyed; as the case with
stack based allocation. Once you’ve reserved memory on the heap, it remains reserved
until explicitly freed. But, just as it must be explicitly freed, it must also be explicitly
allocated. You allocate memory on the heap via the ‘new’ keyword. This allocated
memory is in turn freed via the ‘delete’ keyword. These two keywords aren’t available
in the C programming language, however, you can make use of ‘malloc’ and ‘free’ for
heap allocation and deallocation, respectively.

Program 4.2 – Modified version of Program 4.1 illustrating object handles and

 heap allocation
1
2
3
4
5
6

7
8

9

10

11
12
13
14
15
16

/*
=================
Date.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef DATE_H
#define DATE_H

#include <iostream> //no need to include it anywhere else where Date.h is included

using namespace std;

class Date
{
 public: //public access modifier
 Date();
 void setDate(int, int, int);
 void printDate();

17
18
19
20
21

22

23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62
63
64
65

 private: //private access modifier
 int year;
 int month;
 int day;
};

#endif

/*
=================
Date.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "Date.h"

/*
=================
- Data constructor initializes each data member to 0
- Is always called, thus ensures all Date objects are in a consistent state
=================
*/
Date::Date()
{
 day = 0;
 month = 0;
 year = 0;
}

/*
=================
- Sets new Date value, note: no validity checking is done
=================
*/
void Date::setDate(int day_, int month_, int year_)
{
 day = day_;
 month = month_;
 year = year_;
}

/*
=================
- Prints the date in international format
=================
*/
void Date::printDate()
{
 cout << year << "-" << month << "-" << day << endl;
}

/*
=================
main.cpp
Main entry point for the Date application
=================

66

67

68
69
70
71
72

73

74
75

76
77

78
79

80
81
82

83
84
85

86
87
88

89
90
91

92

93
94

*/

#include "Date.h"

int main()
{
 Date d; //create the Date object d
 Date *dPtr = &d; //create the pointer, dPtr to the Date object d
 Date &dRef = d; //create the reference, dRef to the Date object d

 Date *heapDate = new Date(); //heap allocation

 cout << "The initial date, printed via the object name, is: ";
 d.printDate(); //calls the values as initialised by the default constructor

 cout << "The initial date, printed via a point, is: ";
 dPtr->printDate(); //calls the values as initialised by the default constructor

 cout << "The initial date, printed via a reference, is: ";
 dRef.printDate(); //calls the values as initialised by the default constructor

 d.setDate(2005, 12, 11);
 cout << "The new date, printed via the object name, is: ";
 d.printDate();

 dPtr->setDate(2005, 12, 11);
 cout << "The new date, printed via the object name, is: ";
 dPtr->printDate();

 heapDate->setDate(2005, 12, 14);
 cout << "The new date, as allocated on the heap, is: ";
 heapDate->printDate();

 dRef.setDate(2005, 12, 11);
 cout << "The new date, printed via a reference, is: ";
 dRef.printDate();

 delete heapDate; //free memory

 return 0;
}

Compilation and Output

Accessing class members

Program 4.2 is a near identical duplication of Program 4.1. Even the output, discounting
Program 4.2’s numerous printouts, is identical. However, Program 4.2 features two
additional object handles (access by pointers and references). It also implements heap
allocation via use of the ‘new’ operator.

NOTE: C++ supports access to an object’s data members and member functions
through 3 types of object handles (name, pointer and reference).

The change you’ll see, when looking at this program’s main function, is the creation of
four objects instead of Program 4.1’s one.

The first created object is the same as Program 4.1’s:

Date d; //create the Date object d

Two additional object handles are added on lines 71 and 72:

Date *dPtr = &d; //create the pointer, dPtr to d
Date &dRef = d; //create the reference, dRef d

You are encouraged to play around with these variants. The given source code is
thoroughly documented and clearly highlights the different calls and initialisations (line
74 to 91). In addition, the given program output shows the end result of using different
object handles.

I use the new keyword on line 73. This results in the ‘heapDate’ object’s heap
allocation.

Date *heapDate = new Date();

The ‘delete’ operator on line 92 is responsible for the ‘deallocation’ of the
‘heapDate’ object’s memory.

NOTE: Never dereference a pointer after deallocating the object.

The object’s destructor is called upon deallocation of the class object. Program 4.2
doesn’t have a destructor; hence no destructor will be invoked. I mentioned that a
constructor can be considered a member function with the exception of being invoked
every time an object is created. A destructor is the exact opposite and is called every
time an object is deallocated. You signify a member function as a destructor by
preceding the function name with a tilde (‘~’). In addition this, a destructor’s function
name must be the same as the class name (just as the case with a constructor). For
example, say you had a class called ‘Render’, then you’d create a constructor by
specifying a public member function ‘Render()’ (that may or may not take any
parameters) and a destructor ‘~Render()’ which won’t have any parameters. This is
illustrated below:

/*
=================

Define Class
=================

*/
class Render
{
public:

Render(volume *dimensions); //declare our constructor
~Render(); //declare the destructor.

private:
string *some_literal;

};

/*
=================
Define Constructor
=================
*/
Render::Render(volume *dimensions)
{

//allocate dynamic memory
_image = new Image(dimensions);

}

/*
=================
Define Constructor
=================
*/

Render::~Render()
{

//deallocate reserved memory
delete _image;

}

So there you have it; everything to get you started with memory allocation and the
creation and access of objects. I now proceed on to the last two sections of object based
programming, namely encapsulation and operator overloading. Both encapsulation and
operator overloading contribute to the paradigm of good software engineering and are
greatly used in the game and modern software development industry. Without
encapsulation and operator overloading it would be impossible to accomplish the design
aims of good readability, modifiability and the vital maintenance of large programs.

4.4 Encapsulation

Section 4.2 outlined the difference between data members (the variables defined within
a C++ class) and member functions (the class functions where the actual work is
performed). Section 4.3 showed how a single set of member functions is shared by
multiple instances of a class and how every instance of the class is assigned its own set
of data members. What this chapter will look at now is the concept of information hiding,
more commonly referred to as encapsulation.

The primary motivation behind encapsulation is that some of the details in the definition
of a class might be irrelevant for ordinary clients. Encapsulation is thus the hiding of this
irrelevant information.

These irrelevant details often include the representation of the objects of a class, the
state required to maintain these objects and the member functions used to respond to
messages of a class.

When dealing with encapsulation, you firstly divide a program into a declarative view
and an operational view. The declarative view is commonly referred to as the
specification or interface of the program. The operational view is referred to as the
implementation or body of the program. The specification can, in turn, be defined as a
collection of data and method definitions (called signatures) and descriptions (usually
comments). The body of the program is the representation of the data and the
implementation of the operations.

These are nothing more than a couple of formal definitions but it is these definitions that
are partially to blame for all those ‘.h’ and ‘.cpp’ files you’ve created so far. Many
modern programming languages like Java and C# use an integrated specification and

implementation (with specialised tools for the extraction of the specification). In C++, you
use ‘.h’ and ‘.cpp’ files to physically separate the specification and implementation.
Thus, just like in the previous examples, you’ll define your classes in ‘.h’ files and all
your member functions in ‘.cpp’ files.

The level of separation isn’t only limited to classes and functions but the class definition
is also separated into a private and public interface. All these separated interfaces and
files are, in the end, assembled into executable programs by the pre-processor.

4.4.1 Friends

Having a class definition separated into private and public interfaces can lead to
problems when it is accessed from the outside, specifically, when inheritance is used.
Now, although inheritance isn’t part of object-based programming (falling under object
orientation) it forms part of encapsulation by classes allowing other classes or member
functions of other classes to be declared as friends.

A class, declared as a friend of another class, has access to all the private members of
that friend class. Likewise, declaring a member function as a friend of some other class
will grant access to all the private members of that friend class.

This is best illustrated by the following two code snippets.

class Matrix4x4
{

friend char Matrix::DotProduct();
…
};

Here you have the definition of some class ‘Matrix4x4’ containing the code:

friend char Matrix::DotProduct();

This code portion shows that member function ‘DotProduct’, inherited from class
‘Matrix’, is declared a friend of class ‘Matrix4x4’. Inheritance is indicated with a
double colon, also called the scope operator (‘::’); which, in this case, tells the compiler
to interpret ‘DotProduct’ within the context of ‘Matrix’. Hence, a class gains access
to the members of some other class via inheritance. The member function,
‘DotProduct’, will thus have access to all private members of the friend class
‘Matrix4x4’.

Similarly, in the code extract below, the entire class ‘Render’ is declared a friend of
class ‘Matrix’ (giving it access to all the private member functions of class ‘Matrix’).

class Matrix
{

friend class Render;
…

};

NOTE: A class definition may consist of any number of private and public interfaces.

4.4.2 Namespaces

Namespaces enhance encapsulation by acting as a scope for the definition of elements.
All the previous sample programs included the following code segment:

using namespace std;

This is a predefined namespace called ‘std’. The ‘std’ namespace holds a number of
predefined classes and predefined functions, for example, the already familiar ‘cout’
function. A function must always be qualified with the name of its namespace. For
example; to use ‘cout’ without including the ‘using namespace’ code segment, you
will have to call it like this:

std::cout << ”Some string…” << std::endl;

Just as with this standard namespace, you can also declare namespaces for different
parts of a program. This allows you to use the same class names in different
namespaces. A game can make use of namespaces to partition its engine into distinct
sections by declaring different namespaces for its renderer, physics engine, networking
subsystem, etc. Thus, when initialising the renderer at the start of the game, you’ll
qualify the class (‘GLDriver’ in this case) with the namespace (‘renderer’ in this
case) as follows:

renderer::GLDriver* renderer = Renderer->detectVideoDrv();

4.5 Operator Overloading

Operator overloading gives one the power to change the meaning of an operator. For
example, the addition (‘+’) operator can be overloaded to represent a cross product.

The ‘operator’ keyword is used to facilitate this overloading. Most built-in operators
can be redefined on a class-by-class basis. They can also be redefined in a global
fashion; however, this is rarely done. After defining the overloaded operator, you
implement them as you would normal member functions.

Let’s look at overloading the addition (‘+’) operator. The name of the overloaded
operator is ‘operator+’. The overloaded operator, in this case +, always follows the
operator keyword. Table 4.1 gives the complete list of overloadable C++ operators.

Table 4.1 – C++ Overloadable Operators

Operator Description
+ Binary Addition
- Binary Subtraction
+ Unary Plus
- Unary negation
++ Increment
-- Decrement
+= Addition assignment
== Equality
!= Inequality
-= Subtraction assignment
* Multiplication
/ Division
*= Multiplication assignment
/= Division assignment
%= Modulus assignment
^= Exclusive OR assignment
|= Bitwise inclusive OR assignment
&= Bitwise AND assignment
<<= Left shift assignment
>>= Right shift assignment
& Bitwise AND
&& Logical AND
! Logical NOT
| Bitwise inclusive OR
^ Exclusive OR
|| Logical OR
<< Left shift
>> Right shift
< Less than
> Greater than
= Assignment
% Modulus
~ One's complement
* Pointer dereference

& Memory-Address
[] Array subscript
new new keyword
delete delete keyword
–> Member selector
–>* Pointer-to-member selector
() Function calling
, Comma

The following program illustrates the use of overloaded operators. It specifically
overloads the binary addition operator (‘+’) to return a new ‘Float’ object, thus avoiding
modification of the object from which the operator is called. This returned ‘Float’ object
is cast to an ‘integer’. Program 4.3 doesn’t have any “real life” application but it clearly
illustrates the concept of operator overloading.

Program 4.3 – Overloading Operators

1
2
3
4
5
6
7
8

9
10

11

12

13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28

29

/*
=================
Float.h
- Header file for class definition - SPECIFICATION
- The example overloads the + operator to add two float values together,
 casting the result to int
=================
*/

#ifndef FLOAT_H
#define FLOAT_H

#include <iostream>

using namespace std;

class Float
{
public:
 Float(float);
 Float operator+(Float &);
 void Output();
private:
 float value;
};

#endif

/*
=================
Float.cpp
- C++ file for class definition - IMPLEMENTATION
=================
*/

#include "Float.h"

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57

58
59
60
61
62

63

64
65
66
67
68

69

70
71
72

/*
=================
- Float constructor initializes val data member to 0
- Is always called, thus ensures all Float objects are in a consistent state
=================
*/
Float::Float(float i)
{
 value = i;
}

/*
=================
- overloading the binary addition operator using a member function then casting to int
=================
*/
Float Float::operator+(Float &i)
{
 return Float((int)(value + i.value));
}

/*
=================
- prints the output to the screen
=================
*/
void Float::Output()
{
 cout << value << endl;
}

/*
=================
main.cpp
=================
*/

#include "Float.h"

int main()
{
 Float a = Float(9.5);
 Float b = Float(3.2);
 Float c = Float(0.0);

 c = a + b;

 c.Output();
 return 0;
}

Compilation and Output

Overloading

The code segment:

Float operator+ (Float &);

on line 17 defines the binary addition overloaded operation (with a ‘Float’ type as
specified by the constructor on line 16) for floating-point types. This definition is
implemented on line 47. The client uses this overloaded operator as follows (see the
main section of the program):

Float a = Float(9.5);
Float b = Float(3.2);
Float c = Float(0.0);

c = a + b;

The given four lines of code create the ‘Float’ objects ‘a’, ‘b’ and ‘c’. These objects are
initialised with the values 9.8, 3.2 and 0.0, respectively. The ‘Float’ types are then
added on line 69:

c = a + b;

with this operation translated as:

c = a.operator+(b);

So by defining a new meaning for an existing, built-in operator, you have the power to
add your own custom objects together, for example. In addition, operator overloading
promotes much more compact and robust code. Operator overloading does, however,
come with a couple of guidelines. One of the most important guidelines worth
remembering is that you should always use operating overloading in a symmetrical
manner, that is, if you overloaded the left shift (‘<<’) operator, then you should also
overload the right shift (‘>>’) operator. Another guideline is that you should only use
operator overloading in cases where its use is immediately apparent, for example
overloading the subtraction operator (‘-’) for the calculation of the distance between two

volumetric objects in space makes perfect sense, but using, say, the addition operator
as I did in our example program to cast the sum of two float values to integer doesn’t
really make any sense in “real life”.

I previously identified inheritance and polymorphism as two features of the object-
orientated paradigm, touching on inheritance during the section on friends and dealing
with function polymorphism in section 3. I now move on to object-orientated
programming, focussing in more detail on inheritance, polymorphism and other aspects
of object-orientation.

Chapter 5

CLASSES: OBJECT-ORIENTATED PROGRAMMING

5.1 Preview

Extending pre-defined classes into new ones has become pivotal to modern program
design and is the most important feature of object-orientated programming. This
extension of classes is called inheritance. There are three kinds of inheritance: public,
private and protected. I will focus on public inheritance. The final part of the chapter
introduces the concept of polymorphism (using a single definition for different types of
data). Two types of polymorphism will be touched on: ad-hoc polymorphism (using a
finite range of types) and parametric polymorphism (no finite range of types, thus
allowing your code to work with any type of parameters).

5.2 Inheritance

Inheritance, often termed generalisation, is based on an is a relationship due to the
hierarchical structure between classes and objects. Let’s look at an every day example.
Say you have a car consisting of several components: a steering wheel, four tires and
obviously numerous other components, each quite necessary for the vehicles operation.
Now, inheritance provides a way for the creation of new classes from old ones, hence, in
the case of our car example, ‘car’ is a generalisation of the vehicle’s make. So ‘car’ is
a generalisation of BMW or VW. But because BMW is a car, it inherits all these common
components a car consists of (the steering wheel, the four tires, etc…).

Our trivial example illustrates the importance of inheritance – the complexity of a
program can be reduced by avoiding the redefinition of classes and member functions.
In essence, one class shares code already defined in another class. The class where
the code is shared from is known as the base class with the class inheriting this code
and attributes as the derived class.

5.2.1 UML Diagrams

The Unified Modeling Language (UML) is a standard graphical method for the modeling
of object-orientated software. It originated in the mid-90s as a collaboration effort
between James Rumbaugh, Grady Booch (a pioneer in object-orientation) and Ivar
Jacobson (each of these developers defined their own modeling language in the early
90s). The UML standard is governed by the Object Management Group (OMG).

Visual models of a software system are crucial for an effective software development
process. The large software systems common today are extremely difficult to describe
and maintain without such visual aids. With the use of UML, everyone can interpret the
design of a program in the same way.

In this chapter I use UML diagrams to represent class diagrams (describing classes and
their relationships due to inheritance). UML diagrams are also used in the industry for
interaction diagrams (shows the behaviour of systems via object interaction), state
diagrams (shows internal system behaviour) and component diagrams (shows the
logical and physical arrangement of system components).

Figure 5.1 gives the UML class diagram for our car example. The ‘Wheel’ class is the
base class with the ‘BMW’ and ‘VW’ classes the derived classes inheriting from the
‘Wheel’ class. The book, 3D Game Programming with DirectX 10 and OpenGL, deals
with UML diagrams in much more detail.

Fig 5.1 UML diagram showing a base class and its derived classes

5.2.2 Public Inheritance

Public inheritance gives a derived class access to the public interface of the base class.
This public interface includes all public data members and public member functions.
Public inheritance is best illustrated in Program 5.1.

Program 5.1 – Public Inheritance
1
2
3
4
5
6

7
8

9

10

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47

/*
=================
SetDate.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef SETDATE_H
#define SETDATE_H

#include <iostream>

using namespace std;

class SetDate
{
 public: //public access modifier
 SetDate();
 void setDate(int, int, int);
 void printDate();
 private: //private access modifier
 int year;
 int month;
 int day;
};

#endif

/*
=================
SetDate.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "SetDate.h"

/*
=================
- SetDate constructor initializes each data member to 0
- Is always called, thus ensures all Date objects are in a consistent state
=================
*/
SetDate::SetDate()
{
 day = 0;
 month = 0;
 year = 0;
}

/*
=================
- Sets new Date value, note: no validity checking is done
=================
*/
void SetDate::setDate(int day_, int month_, int year_)

48
49
50
51
52

53
54
55
56

57
58
59
60
61
62

63
64

65

66
67
68
69
70

71

72
73
74
75
76
77

78

79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94

{
 day = day_;
 month = month_;
 year = year_;
}

void SetDate::printDate()
{
 cout << year << "-" << month << "-" << day << endl;
}

/*
=================
Date.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef DATE_H
#define DATE_H

#include "SetDate.h"

class Date : public SetDate
{
 public: //public access modifier
 void displayResults();
};

#endif

/*
=================
Date.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "Date.h"

/*
=================
- Prints the date in international format
=================
*/
void Date::displayResults()
{
 printDate();
}

/*
=================
main.cpp
Main entry point for the Date application
=================
*/

95

96
97
98
99
100
101

102
103
104

105
106

#include "Date.h"

int main()
{
 Date d; //instantiate object d of class Date

 cout << "The initial date is: ";
 d.displayResults(); //calls the values as initialised by the default constructor

 d.setDate(2005, 12, 11);
 cout << "The new date is: ";
 d.displayResults();

 return 0;
}

Compilation and Output

Inheritance

The given program is based on Program 4.1. Program 4.1 has been modified in such a
way as to give the derived class (‘Date’) access to the entire public interface of the base
class (‘SetDate’). The key code snippet, making all of this possible, is located on line
66:

class Date : public SetDate

The declared class ‘Date’ is thus derived from the class ‘SetDate’.

The ‘SetDate’ class is identical to Program 4.1’s ‘Date’ class. Only the public
interfaces are inherited from ‘SetDate’. This gives ‘Date’ access to the member
functions of ‘SetDate’. The member functions ‘setDate’ and ‘printDate’ are thus
directly accessible via the ‘Date’ object ‘d’ created in the main section of the program
(line 98). The main functions of Program 4.1 and 5.1 are identical except for line 104
where I call:

d.displayResults();

instead of

d.printDate();

The private attributes (year, month, day) declared in ‘SetDate’ are not accessible from
anywhere outside the ‘SetDate‘ class. Therefore, calling ‘printDate’ on line 104 will
result in a compiler error. The ‘displayResults’ member function is thus declared to
avoid this.

Inheritance allows you to call the member function ‘printDate’ from within the ‘Date’
class as you would a local function:

void Date::displayResults()
{
 printDate();
}

5.2.3 A Mention of Private & Protected Inheritance

Section 4.2 illustrated that any data member or member function declared as private can
only be accessed by the member functions and friends of that class. Additionally, it
noted that any data member or member function declared as protected is only
accessibly by member functions and friends of that class, including the member
functions and friends of derived classes. Data members or member functions declared
as public are globally accessible.

With private inheritance, all the base data members and member functions are treated
as private regardless of their actual declaration. More simply stated and based on a
public inheritance example of a BMW being a CAR (hence CAR being the base class
and BMW the derived class); with private inheritance, BMW is not a CAR. BMW is rather
implemented in terms of CAR.

Private inheritance is thus used when you'd like to implement a new object in terms of
an existing object and when an is a relationship is inappropriate.

To indicate private inheritance, use of the private keyword as follows:

class Date : private SetDate

The only difference between private and protected inheritance is that protected
members of the base class are treated as protected in the derived class as opposed to
private (as the case with private inheritance). Protected inheritance is indicated with the
protected keyword preceding the base class name in the class designation:

class Date : protected SetDate

5.2.4 Multiple Inheritance

C++ has a feature that allows derived classes to inherit from multiple base classes.
Multiple inheritance, as this feature is called, has been removed from many post-C++
languages such as Java and C# (although there are ways around this in C#) because,
although useful at times, multiple inheritance can create a structural mess when
misused.

Inheritance simplifies a program because it eliminates the need for multiple definitions of
the same thing. Multiple inheritance furthers this idea. The classes inherited from can be
unrelated but needn’t be.

Practically, to indicate multiple inheritance; you separate the base classes with commas
(‘,’). For example, the code snippet below defines the class ‘Date’ to inherit from both
‘SetDate’ and ‘SetTime’:

class Date : public SetDate, public SetTime

NOTE: The base class initialises the constructors of all the derived classes.

In Figure 5.2, the ‘Wheel’ and ‘RevCounter’ classes are the base classes with the
‘BMW’ class the derived class.

Fig 5.2 UML diagram showing multiple inheritance.

Program 5.2 – Multiple Public Inheritance

1
2
3
4

/*
=================
SetDate.h
- Header file for class definition - SPECIFICATION

5
6

7
8

9

10

11
12
13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52

=================
*/

#ifndef SETDATE_H
#define SETDATE_H

#include <iostream>

using namespace std;

class SetDate
{
 public: //public access modifier
 SetDate();
 void setDate(int, int, int);
 void printDate();
 private: //private access modifier
 int year;
 int month;
 int day;
};

#endif

/*
=================
SetDate.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "SetDate.h"

/*
=================
- SetDate constructor initializes each data member to 0
- Is always called, thus ensures all Date objects are in a consistent state
=================
*/
SetDate::SetDate()
{
 day = 0;
 month = 0;
 year = 0;
}

/*
=================
- Sets new Date value, note: no validity checking is done
=================
*/
void SetDate::setDate(int day_, int month_, int year_)
{
 day = day_;
 month = month_;
 year = year_;
}

53
54
55
56

57
58
59
60
61
62

63
64

65

66
67
68
69
70
71
72
73
74
75
76
77
78

79

80
81
82
83
84
85

86

87
88
89
90
91
92
93
94
95
96
97
98

99

void SetDate::printDate()
{
 cout << endl << year << "-" << month << "-" << day << endl;
}

/*
=================
SetTime.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef SETTIME_H
#define SETTIME_H

#include <iostream>

using namespace std;

class SetTime
{
 public: //public access modifier
 SetTime();
 void setTime(int, int, int);
 void printTime();
 private: //private access modifier
 int minute;
 int hour;
 int second;
};

#endif

/*
=================
SetTime.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "SetTime.h"

/*
=================
- SetTime constructor initializes each data member to 0
- Is always called, thus ensures all Time objects are in a consistent state
=================
*/
SetTime::SetTime()
{
 hour = 0;
 minute = 0;
 second = 0;
}

/*

100
101
102
103
104
105
106
107
108
109

110
111
112
113

114
115
116
117
118
119

120
121

122
123

124
125
126
127
128

129

130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
146

=================
- Sets new Time value, note: no validity checking is done
=================
*/
void SetTime::setTime(int hour_, int minute_, int second_)
{
 hour = hour_;
 minute = minute_;
 second = second_;
}

void SetTime::printTime()
{
 cout << hour << ":" << minute << ":" << second << endl;
}

/*
=================
Date.h
- Header file for class definition - SPECIFICATION
=================
*/

#ifndef DATE_H
#define DATE_H

#include "SetDate.h"
#include "SetTime.h"

class Date : public SetDate, public SetTime
{
 public: //public access modifier
 void displayResults();
};

#endif

/*
=================
Date.cpp
- Header file for class definition - IMPLEMENTATION
=================
*/

#include "Date.h"

/*
=================
- Prints the date in international format
=================
*/
void Date::displayResults()
{
 printDate();
 printTime();
}

147
148
149
150
151
152

153

154
155
156

157
158

159
160
161
162

163
164

/*
=================
main.cpp
Main entry point for the Date application
=================
*/

#include "Date.h"

int main()
{
 Date d; //instantiate object d of class Date

 cout << "The initial date and time is: ";
 d.displayResults(); //calls the values as initialised by the default constructor

 d.setDate(2005, 12, 11);
 d.setTime(17, 35, 59);
 cout << "The new date and time is: ";
 d.displayResults();

 return 0;
}

Compilation and Output

Multiple Inheritance

Program 5.1 has been modified to include a class, ‘SetTime’, for the setting and
printing of the time as specified by the object (line 160). The derived class, ‘Date’, has
access to the entire public interface of the base classes ‘SetDate’ and ‘SetTime’.
Multiple inheritance is specified on line 124:

class Date : public SetDate, public SetTime

Thus, class ‘Date’ is derived from the classes ‘SetDate’ and ‘SetTime’.

Just as with Program 5.1, the ‘SetDate’ class is identical to the ‘Date’ class of Program
4.1 and only the public interfaces are inherited from ‘SetDate’ (and now additionally
‘SetTime’). ‘Date’ therefore has access to the member functions of ‘SetDate’ and

‘SetTime’. The member functions ‘setDate’, ‘setTime’, ‘printDate’ and
‘printTime’ are in effect directly accessibly by the ‘Date’ object ‘d’ created in the main
section of the program (line 156). The main function of Program 5.1 has been altered to
include the initialisation of the ‘SetTime’ constructor:

d.setTime(17, 35, 59);

Because the program makes use of multiple inheritance; I call the member functions
‘printDate’ and ‘PrintTime’ in the ‘Date’ class as I would a local function:

void Date::displayResults()
{
 printDate();
 printTime();
}

5.3 Polymorphism

Class-based polymorphism allows objects to respond differently to the same member
function call. With Class-based polymorphism, and its associated virtual functions, it is
easy to design extensible programs. Class-based polymorphism gives programs a
simplified structure.

NOTE: Polymorphism promotes easy debugging, testing and sustainable program
maintenance.

Class-based polymorphism is achieved through a simple mechanism – the ‘virtual’
keyword. A member function is marked as polymorphic by the ‘virtual’ keyword
preceding its declaration. Such a member function is known as a virtual function, it can
now be redefined in all derived classes.

When a virtual function is called, the call is based on the owner object type rather than
the type of the invoking pointer or reference.

Consider an example where you have a base class ‘Car’ and a couple of derived
classes such as ‘Beetle’, ‘Golf’, ‘Jetta’, etc. Say each of these classes has an
‘accelerate’ function, a different function for each of them. When calling each
‘accelerate’ function, it is clearly beneficial to treat these similar functions generically
as objects of the base class ‘Car’. To achieve this functionality, you declare accelerate

in the base class as ‘virtual’, followed by overriding of the ‘accelerate’ function in
each of the derived classes. This ‘accelerate’ function can look something like this:

virtual void accelerate();

NOTE: Virtual functions allow a program to dynamically (at run time) determine
which derived class to use.

5.3.1 Ad-Hoc Polymorphism

Ad-hoc polymorphism is a form of class-based polymorphism where a finite range of
types are dealt with. It is nothing more than the overloading of member functions to take
different types with the same name. Ad-hoc polymorphism gives us an easy way to, say,
overload the binary subtraction operator (‘-’) to compare two strings.

5.3.2 Parametric Polymorphism (Generics)

Parametric Polymorphism, also known as generic programming, allows your member
functions to work with any type of parameters.

In C++, this generic mechanism is exercised through the use of templates. Templates
allow us to specify overloaded functions (called template functions). Templates further
facilitate the specification of a related range of classes (called template classes).

A template’s definition always begins with the template keyword. The function template’s
formal type parameters are enclosed within angular brackets (‘< >’) with the
‘template’ keyword always followed by these brackets.

Formal type parameters are built-in types used for the specification of function argument
types, the return type of a function or for the declaration of variables. Formal type
parameters can be preceded by either the ‘typename’ or ‘class’ keyword.

A function template can be defined as follows:

template <class T>
T difference(T val1, T val2)
{
 T total;

 if (val1 > val2)

 total = val1 – val2;
 else
 total = val2 – val1;

return total;
}

The code given here is incorporated into Program 5.2.

The ‘difference’ function declares a single type parameter ‘T’ as the data type to
work with. The true type of the data sent to ‘difference’ is substituted for ‘T’
throughout the function – the compiler is responsible for this process (it creates a
function for the specific data type the function was called for).

Program 5.3 – Function Templates

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18

19
20
21
22

23
24

25
26
27
28
29
30
31

/*
=================
Templ.cpp
- A program making use of function templates
=================
*/

#include<iostream>

using namespace std;

/*
=================
difference template function
- main program
=================
*/
template <class T>
T difference(T val1, T val2)
{
 T total;

 if (val1 > val2)
 total = val1 - val2;
 else
 total = val2 - val1;

 return total;
}

/*
=================
main function
- main program
=================
*/
int main()

32
33
34

35
36

37

38

39
40
41

{
 int value1i = 1;
 int value2i = 3;

 float value1f = 7.5;
 float value2f = 19.3;

 cout << "The difference between two integers: " << difference(value1i, value2i)
<< endl;
 cout << "The difference between two floating point values: " <<
difference(value1f, value2f) << endl;

 return 0;
}
//EOF

Compilation and Output

Class templates, on the other hand, are referred to as parameterised types due to their
dependency on one or more type parameters for the specification of a precise template
class. The class ‘Draw’, can, for example, become the basis for many ‘Draw’ classes
through the use of templates (such as a ‘Draw’ class defined for circles, one for arches,
etc). The compiler, as with template functions, generates the source code for the
template class as required by the programmer.

A template class definition is preceded by the header:

template <class T>

This indicates the type of the ‘Draw’ class to be created (need not be identifier ‘T’).

Our ‘Draw’ class template might look something like this:

template <class T>
class Draw
{
public:
 Draw(); //default constructor
 ~Draw(); //destructor
 create(T&); //construct object based on an element

private:
 int size;
 bool transparent;
};

The implementation of this class’s member functions will also be preceded by the

template <class T>

header as shown here:

template <class T>
Draw<T>::Draw()
{
 size = 0;
 transparent = false;
}

template <class T>
Draw<T>::create(T &geometric_object)
{
 ...
}

When instantiating the object in the main section of the program, you’ll specify the type
in angular brackets (‘< >’) followed by the object name, for example:

Draw<int> geometricObject();

You can now access all the member functions like you’d normally do, by, for instance,
writing:

geometricObject.Draw();

Chapter 6

DATA STRUCTURES: ARRAYS

6.1 Preview

Data structures are specific building blocks used to store data for efficient retrieval and
use. There are numerous types of data structures, from linear data structures such as
lists, arrays and vectors to graph-based data structures (data structures consisting of
vertices or nodes connected by edges or lines) such as trees and adjacency lists. This
chapter mainly focuses on arrays.

6.2 Arrays

An array is one of the simplest and most frequently used data structures. They are
constructed using a sequence of memory positions. These memory positions are related
and the array elements are stored adjacent to each other.

An array has a name and type with the different array elements indicated by position
numbers contained within square brackets (‘[]’). The position number of the first
element in an array is always zero (‘0’). These positions are called array subscripts.

NOTE: Array subscripts are always integer.

Figure 6.1 depicts the creation of an array called ‘our_array’. Shown is its memory
representation and logical contents as accessed via subscripts.

Fig 6.1 A graphical representation of an array

Subscripts are used for more than just the accessing of array elements, specifically; they
can be used in so-called subscript operations, for example:

int a, b, c;

a = 4; b = 1;

/* the value 4 contained by our_array[5] now becomes 7 */
our_array[a+b] += 2;

/* array values are also easily assignable to variables */
c = our_array[3]; //c will now equal 11

/* numerous variants of these operations are possible */
c = our_array[6]/2; //c will now equal 3

The type of element and the number of elements within each array are specified during
declaration of the array.

More examples of array declarations:

int numbers[50]; //reserves memory for 50 numbers
char names[30]; //reserves memory for 30 characters

int set[5] = {1, 7, 15, 8, 13}; //declare and initialise
int set2[] = {1, 5, 7, 9}; //set2[3] will be 9
int set3[10] = {0}; //initialise all elements to 0

NOTE: When you initialise an array during its declaration, it is not required to indicate
the number of elements.

Program 6.1 – Basic Array Initialisations

1
2
3
4
5
6

7
8
9
10

11

12
13
14
15
16
17
18
19
20

21
22
23
24
25

26

27
28
29
30
31

32
33

34
35
36
37
38

39

40

/*
=================
ArrayInit.cpp
- A program used for the initialisation of an array via a for loop
=================
*/

#include<iostream>
/* for our random function */
#include<time.h>
#include<stdlib.h>

using namespace std;

/*
=================
main function
- main program
=================
*/
int main()
{
 int our_array[5]; //declare our array to contain 5 integers

 /* a for loop used to initialise our array to 0 */
 for(int i = 0; i <= 4; i++)
 {
 our_array[i] = 0;
 }

 cout << "Element" << " Value" << endl;

 /* use another for loop to print the array elements */
 for(int j = 0; j <= 4; j++)
 {
 cout << j << "\t" << our_array[j] << endl;
 }

 /* makes sure the random values are different each time we run the program */
 srand(time(NULL)); //built in C/C++ seeding function

 /* a for loop used to randomly assign values to the array elements */
 for(int k = 0; k <= 4; k++)
 {
 our_array[k] = rand()%6 +1; //random values between 1 and 6
 }

 cout << endl << "Element" << " Value" << endl;

 /* loop to print the array elements */

41
42
43
44

45
46
47

 for(int l = 0; l <= 4; l++)
 {
 cout << l << "\t" << our_array[l] << endl;
 }

 return 0;
}
//EOF

Compilation and Output(running the program twice)

 Due to the random function your output may differ…

Arrays can contain any type – even characters. For instance, you can initialise a
character array by use of a string:

char our_string[] = “Hello World!”;

The string “Hello World!” contains 12 characters plus the string termination character
(‘\0’). All strings terminate with this character. Figure 6.2 illustrates the alternate
creation of such a character array:

Fig 6.2 A graphical representation of a character array.

Character arrays can also be entered from the keyboard:

char our_string[10];

cin >> our_string;

6.2.1 Sorting of Arrays

Sorting, together with searching, is one of the most integral operations regularly
performed on data structures. Many sorting algorithms exist; I will look at bubble sorting,
also known as exchange sorting.

Bubble sorting works by continually stepping through the elements of an array. Two
elements are compared during each step with the algorithm swapping these elements
whenever they are found to be in the incorrect order. This process continues until all
elements are sorted.

Program 6.2 sorts an array in ascending order.

Program 6.2 – Bubble Sort

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18

/*
=================
Bubblesort.cpp
- A program implementing bubble sort
=================
*/

#include<iostream>

using namespace std;

/*
=================
main function
- main program
=================
*/
int main()
{
 int our_array[9] = {2, 7, 4 ,11, 17, 14, 21, 0, 8}; //declare and initialise our array
 int temp_store = 0;

19

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43

44
45
46

 cout << "The original order:" << endl;

 /* print the contents of the original array */
 for(int i = 0; i <= 8; i++)
 {
 cout << our_array[i] << " ";
 }

 /* sort the array */
 for(int step = 1; step <= 8; step++)
 {
 for(int k = 0; k <= 7; k++)
 {
 if(our_array[k] > our_array[k+1]) //compare
 {
 temp_store = our_array[k]; //exchange
 our_array[k] = our_array[k+1];
 our_array[k+1] = temp_store;
 }
 }
 }

 cout << endl << "The sorted order (rising):" << endl;

 /* print the contents of the sorted array */
 for(int j = 0; j <= 8; j++)
 {
 cout << our_array[j] << " ";
 }

 return 0;
}
//EOF

Compilation and Output

Bubble Sorting

The bubble sort algorithm is implemented from lines 26 to 37. The given algorithm’s
steps can be summarised as the comparison between adjacent elements. It swaps the
adjacent elements whenever the first element is greater than the second. This is done
for each pair of adjacent elements and the process is repeated until the last element is
reached. The process is thus repeated for one element less during each step.

The ‘temp_store’ variable is used for the temporary storage of array elements.

Bubble sorting is highly inefficient when it has to deal with a large collection of elements.
It must not be considered anything more than a simple algorithm, one that’s easy to
implement and understand.

To improve performance, you can reverse the array traversal order. This can be done
during each step by passing from top to bottom and then from bottom to top, alternately.
This bubble sort variant is known as bidirectional bubble sort or shuttle sort.

6.2.2 Array Searching

Searching is an essential operation for effective array use. Finding some key value in an
array is often critical for many text parsing applications. This section deals with both
linear and binary searching techniques. Linear search is a simple technique often used
for the searching of small or unsorted arrays. Binary search is a high-speed technique
often used for big, sorted arrays.

Linear search works by comparing each element of the array with the value being
searched for. Program 6.3 implements linear searching.

Program 6.3 – Linear Search

1
2
3
4
5
6

7

8

9

10
11
12
13
14
15
16
17
18
19

20

/*
=================
Linearsearch.cpp
- A program implementing the linear search technique
=================
*/

#include<iostream>

using namespace std;

#define SIZE 10 //define the constant SIZE

/*
=================
main function
- main program
=================
*/
int main()
{
 int our_array[SIZE] = {55, 11, 22, 19, 71, 48, 37, 90, 211, 5};
 int position, search_value;

 cout << endl << "Please enter the value to search for: ";

21

22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

37
38
39

 cin >> search_value;

 /* linear search algorithm */
 for(int i = 0; i <= SIZE - 1; i++)
 {
 if(our_array[i] == search_value)
 {
 position = i;
 break;
 }
 else
 position = -1;
 }

 if(position == -1)
 cout << "The value searched for was not found" << endl;
 else
 cout << search_value << " found at position: " << position << endl;

 return 0;
}
//EOF

Compilation and Output

Linear Searching

The program does a sequential search through the array, in the process checking every
element until a match is found (lines 23 to 31). The position of the matching element is
returned, otherwise ‘-1’.

The next program deals with binary search. Binary search works by finding the median
in a set of values (the middle value in the sorted array); this median is used as a kind of
divider to determine whether a value comes before or after it. Say the desired value falls
in the lower half of the median; then this half is divided by a new median. The search
repeatedly checks to see whether a searched for value lies in the lower or upper half of
a median, continuously narrowing the search area until the value is found or the interval
is empty.

NOTE: After each comparison, binary search eliminates one half of the elements in
an array.

Program 6.4 – Binary Search

1
2
3
4
5
6

7

8

9

10
11
12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35

36
37

38
39
40
41

/*
=================
Binarysearch.cpp
- A program implementing the binary search technique
=================
*/

#include<iostream>

using namespace std;

#define SIZE 10 //define the constant SIZE

/*
=================
main function
- main program
=================
*/
int main()
{
 int our_array[SIZE] = {55, 11, 22, 19, 71, 48, 37, 90, 211, 5};
 int position, search_value, median, low, high;
 int temp_store; //for our sorting algorithm

 low = 0; //the position in the array from where we start our search
 high = SIZE; //the final position in our array

 /* first sort the array for binary search to work */
 for(int step = 1; step <= SIZE - 1; step++)
 {
 for(int k = 0; k <= SIZE - 2; k++)
 {
 if(our_array[k] > our_array[k+1]) //compare
 {
 temp_store = our_array[k]; //exchange
 our_array[k] = our_array[k+1];
 our_array[k+1] = temp_store;
 }
 }
 }

 /* print the contents of the sorted array */
 cout << endl << "The sorted array:" << endl;

 for(int j = 0; j <= SIZE - 1; j++)
 {
 cout << our_array[j] << " ";
 }

42
43

44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59

60
61

62
63
64
65
66

67
68
69

 cout << endl << "Please enter the value to search for: ";
 cin >> search_value;

 /* binary search algorithm */
 while(low <= high)
 {
 median = (low + high)/2; //start exactly in the middle

 if(search_value == our_array[median])
 {
 position = median; //position found!
 break;
 }
 else
 if(search_value < our_array[median])
 {
 high = median - 1; //search lower half
 }
 else
 low = median + 1; //search upper half

 position = -1; //didn't find it
 }

 /* print the results */
 if(position == -1)
 cout << "The value searched for was not found" << endl;
 else
 cout << search_value << " found at position: " << position << endl;

 return 0;
}
//EOF

Compilation and Output

Binary Searching

The binary search algorithm is defined from lines 45 to 61. This section of code
compares the middle element of the array with the value being searched for; if they are
equal, the value is found (line 50), if the element being searched for is less than this

middle element, the first half of the array is searched (line 56) else the second half is
searched (line 59).

6.2.3 Multi-dimensional Arrays

The arrays illustrated thus far have all been indexed via single integers
(‘our_array[3]’). Multi-dimensional arrays are indexed using multiple integers
(‘our_array[1][4]’). These arrays, indexed in rows and columns and thus
constituting a table, are commonly referred to as two-dimensional arrays.

Declaration of a two-dimensional array:

int table[3][4];

This array, ‘table’, consists of three rows and four columns. Figure 6.3 shows the
logical table-like structure of such a 2D array.

Fig 6.3 Graphical representation of a table constructed via a two-dimensional array

You now finally have enough knowledge to write your first game (what it’s really all
about!). This game will be a simple maze traversal, but expanding it to a full sized text
based adventure won’t take too much effort.

Perhaps after mastering basic OpenGL or Direct3D topics, you can come back to this
program and make something more graphical. I, for example, used Program 6.5 as the
basis for a Pocket PC game, the image below shows this game, Catacomb Commander,
in action:

Program 6.5 – The First Game (making use of a two-dimensional array)

1
2
3
4
5
6

7
8
9
10

11

12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27

/*
===============
Catacomb Commander
CataEngine.h
===============
*/

#include<iostream>
#include<conio.h> //for getch
#include<dos.h> //for textcolor
#include<stdio.h> //for fileinput

using namespace std;

#define COLUMNS 19 //columns
#define ROWS 19 //rows

/*
===============
CLASS DECLARATIONS
===============
*/

class CEngine
{
public:
 CEngine();
 ~CEngine();
 void PrintMaze(int [][COLUMNS], int);
 void Control(int map[][COLUMNS], int, int);
};
//EOF

28
29
30
31
32
33

34

35

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75

76

/*
===============
Catacomb Commander
CataEngine.cpp
===============
*/

#include"CataEngine.h"

/*
======================
CEngine
-Empty Default Constructor
======================
*/
CEngine::CEngine()
{
}

/*
======================
~CEngine
-Empty Destructor
======================
*/
CEngine::~CEngine()
{
}

/*
======================
Control
-Game Movement
======================
*/
void CEngine::Control(int map[][COLUMNS], int x, int y) //via number keypad
{
 int user_input;
 map[x][y] = 3;
 PrintMaze(map,COLUMNS); //prints map on each cycle
 map[x][y] = 0;
 /* use getch built in function to grap input from command line */
 user_input = getch();

 /* recursively analyse user input */

 switch(user_input)
 {
 case '6':
 if(map[x][y+1] == 0)
 Control(map,x,y+1); //move right
 else
 if(map[x][y+1] == 1)
 Control(map,x,y); //don't move
 break;

 case '4': //move left

77
78
79
80
81
82

83
84
85
86
87
88
89

90
91
92
93
94
95
96

97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

 if(map[x][y-1] == 0)
 Control(map,x,y-1); //move left
 else
 if(map[x][y-1] == 1)
 Control(map,x,y); //don't move
 break;

 case '2':
 if(map[x+1][y] == 0)
 Control(map,x+1,y); //move down
 else
 if(map[x+1][y] == 1)
 Control(map,x,y); //don't move
 break;

 case '8':
 if(map[x-1][y] == 0)
 Control(map,x-1,y); //move up
 else
 if(map[x-1][y] == 1)
 Control(map,x,y); //don't move
 break;

 case 'x': case 'X': break;
 default :
 Control(map,x,y); //don't move
 }
}

/*
======================
PrintMaze
-Draws the Level Map
======================
*/
void CEngine::PrintMaze(int maze[][COLUMNS], int size) //map creator
{
 /* clear the screen by printing 25 newlines */
 for(int k = 0; k <= 25; k++)
 cout << endl;

 /* draw the map and player */
 for(int i = 0; i <= size - 1; i++)
 {
 for(int j = 0; j <= size - 1; j++)
 {
 if (maze[i][j] == 3)
 cout << "*"; //draw player
 else
 if(maze[i][j] == 1)
 cout <<"#"; //draw walls
 else
 cout << " "; //draw halls
 }
 cout << endl;
 }
}

129

130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159

160
161
162
163

//EOF

/*
===============
Catacomb Commander
To play: 2 = down, 6 = right ,8 = up, 4 = left
===============
*/

#include"CataEngine.h"

int main()
{
 /* init the map - a 2D array */
 int map[ROWS][COLUMNS] = {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
 {1,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1},
 {0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1},
 {1,1,1,0,1,0,0,0,0,1,0,1,1,1,1,1,1,1,1},
 {1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0,0,1},
 {1,1,1,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1},
 {1,0,0,1,0,1,0,1,0,1,0,1,0,0,1,1,1,1,1},
 {1,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,1,1},
 {1,1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,1},
 {1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1,1,1},
 {1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,0,1,1,1},
 {1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1},
 {1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,1},
 {1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1},
 {1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1},
 {1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1},
 {1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1},
 {1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1}};

 int x = 2, y = 0; //starting position on the map ROW 2, COLUMN 0

 CEngine instance;
 instance.Control(map,x,y);
}
//EOF

Compilation and Output

2D-Arrays

The multiple-dimensional array is initialised on line 140 to line 158. This array, ‘map’, is
the “level” the player gets to walk around in. After setting up the starting position (line
159), I call the member function, ‘Control(map,x,y), with this position and the array
as parameters.

The ‘Control’ member function starts off by calling the ‘PrintMaze’ member function.
The ‘Control’ member function also analyses the input via the numerous case
statements, recursively progressing until the player exits the maze or the ‘x’ key is
pressed.

…Nihil Sine Labore…

