
Compiler Setup and DirectX/OpenGL Setup

A very important part of programming is choosing a decent development
environment setup. Microsoft’s Visual Studio product range is by far one of
the greatest IDEs ever developed, so go and buy a recent version of Microsoft
Visual Studio, many computer science departments also have agreements
with Microsoft to provide these IDEs free of charge to their students – please
enquire about this. IDEs like Visual Studio include everything a developer
might need; from real-time debugging tools to utilities designed for the
elimination of memory leaks.

Visual Studio also provides an uncluttered and aesthetically pleasing
environment to work in. Generally speaking, I’m yet to come across many
game development companies not using Visual Studio – it is the complete
development package, even supporting mobile development. That said; one
possible downside to Visual Studio is its platform dependency. It is a
Windows-only product – although this works fine in the world of computer
games, it doesn’t fit well into the grand scheme of things as far as platform
interoperability goes. Of course this doesn’t hinder your application in any
way. All the DirectX and OpenGL code available on the book’s website was
written and compiled using Visual Studio 2005.

We’ll now briefly look at using Microsoft Visual Studio .NET 2005 for the
compilation of DirectX and OpenGL programs – all that’s needed to run and
compile DirectX programs is installation of the latest DirectX SDK available
from Microsoft’s website (http://msdn.microsoft.com/en-
us/directx/default.aspx). Compilation of the presented OpenGL programs
requires the basic OpenGL and GLUT libraries. Windows comes with
OpenGL, and Visual studio provides the needed OpenGL libraries – GLUT,
available from http://www.xmission.com/~nate/glut.html must, however, be
installed. Simply download the latest zip file and extract “glut32.dll” to
“…\Windows\system\” with “glut32.lib” going in Visual Studio’s
“…\VC\PlatformSDK\Lib” folder. The main GLUT header file, glut.h, must be
extracted to Visual Studio’s “PlatformSDK\Include\gl” folder. Figure A.1 shows
the contents of the “…\VC\PlatformSDK\Include\gl” folder:

http://msdn.microsoft.com/en-us/directx/default.aspx
http://msdn.microsoft.com/en-us/directx/default.aspx
http://www.xmission.com/%7Enate/glut.html

Fig A.1 Contents of the “…\VC\PlatformSDK\Include\gl” folder.

Microsoft Visual Studio 2005 Environment

Launching Visual Studio for the first time allows you to customise the default
IDE layout via the selection of several predefined window layouts. You can
also manually set up the visible windows by clicking on “View”. This process is
outlined by Figure A.2.

Fig A.2 Manual setup of Visual Studio 2005’s layout.

Once you’re comfortable with the IDE’s layout, you’re ready to start
programming. If you click on the “Projects” tab (Figure A.3) you’ll see a list of
the recently loaded or created Visual Studio projects. To create a new project,
simply click on the “New Project” button. This will launch the “New Project”
wizard (Figure A.4).

Fig A.3 Most recently loaded or created projects.

Fig A.4 Creating a new Visual Studio project – Step 1.

Your project selection tree may vary depending on the options selected during
the Visual Studio installation. When installing Visual Studio 2005, I chose to
install Microsoft Visual C++ and Microsoft Visual C# (with XNA later added).

You’ll have additional project creation options if you’ve installed other
languages such as Microsoft Visual Basic.

For OpenGL/GLUT based programs, for example, you should create a “Win32
Console Application”, calling the program whatever you like (under “Name”)
and saving it to any location (under “Location”). Once you’ve entered these
values you can click on “OK” (Figure 1.5 shows the generated window).

Fig A.5 Creating a new Visual Studio project – Step 2.

The final thing to do is click on the “Next” button followed by selection of the
“Empty project” checkbox (Figure A.6). You can now click on “Finish”.

Fig A.6 Creating a new Visual Studio project – Step 3.

You will now have an empty project similar to the one depicted by Figure A.7.
You can either include already existing files into your project (Figure A.8a,
A.8b) or create new source files for it (Figure A.9a, A.9b).

Fig A.7 The newly created project.

Fig A.8a Adding an existing source file to your project.

Fig A.8b Selecting existing files to add to the project.

Fig A.9a Adding a new source file to your project.

Fig A.9a Selecting the type of file and its name.

Once you have created/imported your application’s source files, you’re ready
to compile the code (following the appropriate setup of Visual Studio’s project
properties). In addition to compiling entire applications, Visual Studio also
offers the option of compiling a selected source file – a very useful feature.
Figure A.10a and A.10b illustrates this feature. Clicking on the source file with
the right mouse button will yield the illustrated options.

Fig A.10a Compiling a single source file.

Fig A.10b Output after compiling a single source file.

When you’re ready to build your application (i.e. create the executable) you
can either click the little “Start” icon (Figure A.11a) or access the “Build”
options by clicking on “Build” in the toolbar (Figure A.11b). Clicking the “Start”
icon will cause your application to launch after it has been compiled and
linked.

Fig A.11a Building and executing your application.

Fig A.11b Building your application without executing it.

Microsoft Visual Studio 2005 Project Properties

Before compiling a project, you’ll need to configure Visual Studio’s linker. To
do this, open your project’s “Properties” dialog (Figure A.12).

Fig A.12 Accessing the Properties dialog.

Now select the “Linker” sub-tree node followed by the “Input” option. Here
you’ll include all the necessary OpenGL/GLUT/DirectX/etc libraries (shown in
Figure A.13a for basic DirectX functionality and Figure A13b for OpenGL).

Fig A.13a Basic Linker Input setting for a DirectX application.

Fig A.13a Basic Linker Input setting for an OpenGL application.
