
Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 1 of 8 

Chapter 12  
 
End of Chapter Exercises 
1. Given the following declaration: 

ARRAY:numbers OF [7] integer ; 

And assuming the array has been populated with the values 2, 4, 6, 8, 

10, 12, 14, what would the following Display statements output? 

Display (numbers [4]) ; 

Display (numbers [1]) ; 

Display (numbers [6]) ; 

Display (numbers [0]) ; 

Display (numbers [7]) ;  

10 – index 4 is the fifth element 

4 – index 1 is the second element 

14 – index 6 is the seventh element 

2 – index  

Error – index 7 doesnʼt exist; the array elements are numbered from 0 to 
6. 

2. Given the following declaration: 

ARRAY:salesData OF [25] [12] real ; 

How many rows does the array salesData have? How many columns 
does it have? 

The array salesData has 25 rows and 12 columns. 

3. Using the array declaration from exercise 2 above, state which of the 
sox statements below, a, b, c, d, e, or f correctly places the value 100 
into the array at row 10 column 6: 

a. salesData [10] [6] ← 100 ; 

b. salesData [6] [10] ← 100 ; 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 2 of 8 

c. salesData [11] [7] ← 100 ; 

d. salesData [7] [11] ← 100 ; 

e. salesData [9] [5] ← 100 ; 

f. salesData [5] [9] ← 100 ; 

Arrays use zero-based indexing, so the 10th row will be index 9 and the 
6th column will be index 5. The row index always comes before the 
column index, so statement (e) is the one we want. 

 

4. Earlier we introduced the function Length which returns the size of an 
array expressed as the maximum number of its elements. A problem 
with this function is that it can cause the algorithm designer to 
inadvertently introduce a bug into their program because of zero-based 
array indexing. If an array has ten elements Length will return the value 
10, but because of zero-based indexing, the 10th element of the array is 
accessed by an index value of 9, i.e. Length (array) – 1. Using the 
HTTLAP strategy design a new function MaxIndex that returns the index 
value of an arrayʼs final element rather than the arrayʼs length. That is, 
MaxIndex would return 9 for an array with a maximum of 10 elements, 99 
for a 100-element array, and so on. Your solution can make use of the 
Length function. 

FUNCTION MaxIndex (ARRAY:theArray) RETURNS integer 

   RETURN Length (theArray) -1 ; 

ENDFUNCTION 

 

5. Design a program that solves the problem of allowing a user to create a 
shopping basket for an on-line store. The program should allow the 
user to enter products (up to a maximum of fifty items) which will be 
added to the basket (stored as an array). Do not worry about deletion at 
this time. Items will always be added to the end of the array.  

Letʼs say that products are identified by a unique integer product code. 
We could define the shopping basket thus: 

ARRAY:basket OF [50] integer ; 

Then we can fill the basket thus: 

integer:count , 

        productId ; 

 

count ← 0 ; 

WHILE (user not finished) AND (count ≤ MaxIndex (basket)) 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 3 of 8 

   Select a product to buy ;  

   basket [count] ← productId ; 

   count ← count + 1 ; 

ENDWHILE 

 

6. Extend your solution to task 2 to allow items to be deleted from the list. 
You need to consider what happens to gaps: should items be moved up 
the array to close haps left by deletion? Start by solving the simpler 
problem of deleting a value without considering the gaps. Once you are 
happy with that solution, then tackle the problem of the gaps. For 
example, if the second array element is deleted all the elements from 
the third downwards should be moved up one position. 

To delete one item without closing the gaps: 

PROCEDURE DeleteItem (REFERENCE:ARRAY:theBasket, integer:index) 

   theBasket [index] ← 0 ; 

ENDPROCEDURE 

But to close the gaps: 

 

PROCEDURE DeleteItem (REFERENCE:ARRAY:theBasket, integer:index) 

   integer:count ; 

   FOR count GOES FROM index + 1 TO MaxIndex (theBasket) 

      theBasket [index-1] ← theBasket [index] ; 

      theBasket [index] ← 0 ; 

   ENDFOR 

ENDPROCEDURE 

Note, the setting of each element to 0 after it has been copied could be 
avoided if we also keep track of the index of the current last item in the 
basket, with a variable called lastIndex, say. Then, we simply copy 
items back from index to lastIndex and then set the element at 
lastIndex to zero. 

7. The algorithm for randomly accessing the cakeTally array (see section 
on random access in arrays) could be written at least two other ways by 
using a continuation flag instead of a cakeType value greater than 2 
being entered. Using the HTTLAP strategy design two alternative 
algorithms for this problem. One should a WHILE loop and the other a 
DO…WHILE loop. 

Hereʼs the original algorithm: 

ARRAY:cakeTally OF [3] integer ; 

integer:counter ; 

FOR counter GOES FROM 0 TO Length (cakeTally) – 1 

   cakeTally [counter] ← 0 ; 

ENDFOR 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 4 of 8 

integer:cakeType, 

        quantity ; 

Get (keyboard, REFERENCE:cakeType, REFERENCE:quantity) ; 

WHILE (cakeType ≤ Length (cakeTally) – 1) 

   cakeTally [cakeType] ← cakeTally [cakeType]+ quantity ; 

   Get (keyboard, REFERENCE:cakeType, REFERENCE:quantity) ; 

ENDWHILE 

Hereʼs how we could rewrite it with a WHILE and a continuation flag 

character:response ; 

response ← 'Y' ; 

WHILE (response= 'Y') OR (response = 'y') 

   Get (keyboard, REFERENCE:cakeType, REFERENCE:quantity) ; 

   cakeTally [cakeType] ← cakeTally [cakeType]+ quantity ; 

   Display ('Another cake? Y/N') ; 

   Get (keyboard, REFERENCE:response) ; 

ENDWHILE 

 

And with a DO…WHILE 

character:response ; 

DO    

   Get (keyboard, REFERENCE:cakeType, REFERENCE:quantity) ; 

   cakeTally [cakeType] ← cakeTally [cakeType]+ quantity ; 

   Display ('Another cake? Y/N') ; 

   Get (keyboard, REFERENCE:response) ; 

WHILE (response= 'Y') OR (response = 'y') 

 

 

8. Look at the patient record structure in section 12.1.  As it stands, it has 
fields to hold various address and date items. It might be more natural 
to think of an address as a record structure in its own right, and similarly 
a date. Amend the record type by creating two new types: AddressRecord 
and DateRecord. The address record structure will have the following 
fields: streetAddressLine1,   streetAddressLine2, postalTown, and  
postalCode each of which should be a string. A DateRecord will have three 
integer fields: day, month, and year. Using these two new types, amend 
the PatientRecord type by removing the address and date fields and 
replacing them by three new fields: address (of type AddressRecord), 
birthDate, and joinDate (which should both be of type DateRecord). 

Patient records. 

NEWTYPE AddressRecord IS  

   RECORD 

   string:streetAddressLine1,    



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 5 of 8 

          streetAddressLine2,  

          postalTown,  

          postalCode; 

   ENDRECORD 

NEWTYPE DateRecord IS  

   RECORD 

   integer:day,    

           month,  

           year; 

   ENDRECORD 

NEWTYPE PatientRecord IS  

   RECORD 

   string: title, 

           familyName, 

           givenName ; 

   integer:birthday, 

           birthMonth, 

           birthYear ; 

   AddressRecord:address ; 

   string:telephone ; 

   DateRecord:birthDate, 

              joinDate ; 

   ENDRECORD 

 

9. Change Solution 12.13 so that it displays the table in transposed form 
where the rows appear in reverse order. 

Hereʼs solution 12.13: 

FOR column GOES FROM 0 TO columns -1  

   FOR row GOES FROM 0 TO rows -1  

      Display (salesTable [row, column])  ; 

   ENDFOR 

   Display (↵) ; 

ENDFOR 

To display the rows in reverse order we simply need to make the inner 
FOR loop count down rather than up: 

FOR column GOES FROM 0 TO columns -1  

   FOR row GOES FROM rows -1 TO 0 

      Display (salesTable [row, column])  ; 

   ENDFOR 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 6 of 8 

   Display (↵) ; 

ENDFOR 

10. An input file, numbers.txt, contains 10 real numbers. Design an 
algorithm to calculate the average value of the 10 numbers and to 
display all the numbers that are greater than the average together with 
their position in the file. For example, if numbers.txt contained: 

1.3 21.0 7.8 4.5 5.7 8.9 3.5 1.4 4.1 9.0 

then the algorithm would display the following: 

Average is 6.72 

Greater than average & position: 

21.0, position 2 

7.8, position 3 

8.9, position 6 

9.0, position 10 

 

Solution: 

real:value, 

     average, 

     sum ; 

integer:position ; 

integer:size IS 10 ; 

ARRAY:myNumbers OF [10] real ; 

file:numbers ; 

numbers ← 'numbers.txt' ; 

Open (numbers) ; 

sum ← 0 ;  

FOR counter GOES FROM 1 TO size 

   Get(numbers, REFERENCE:myNumbers [counter – 1] ; 

   sum ← sum + myNumbers [counter – 1] ; 

ENDFOR 

Close (numbers) ; 

average ← sum ÷ size ; 

Display ('Average is ' + average↵) ; 

Display ('Greater than average & position:'↵) ; 

FOR counter GOES FROM 1 TO size 

   IF (myNumbers [counter – 1] > average 

      Display (myNumbers [counter – 1] + ', position ' + 

               counter↵) ; 

   ENDIF 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 7 of 8 

ENDFOR 

    

 
Projects 
StockSnackz Vending Machine 

Stocksfield Fire Service 

Make use of function Ord (character) RETURNS integer. 
ARRAY:fireCodes OF [4] string ← {'Use coarse spray↵',  

                                  'Use fine spray↵', 

                                  'Use foam↵', 'Use dry agent↵'} ; 

Get (keyboard, REFERENCE:EAC) ; 

Display (fireCodes[Ordinal(EAC[0])-49]) ; 

//Why -1? – think about array indexing 

 

// How do we deal with invalid codes? 

IF ((EAC[0] ≥ '1') AND (EAC [0] ≤ '4')) 

   Display (fireCodes[Ordinal(EAC[0])-49]) ; 

ELSE 

   Display ('Invalid fire fighting code↵') ; 

ENDIF 

 

Or, longhanded: 
integer:ordinalCode , 

        numericCode ;  

character:code ; 

code ← EAC [0] ; 

ordinalCode ← Ord (code); 

numericCode ← ordinalCode -48 // ASCII code 48 = '0', so 

                               // subtracting 48 turns character 

                               // into numeric equivalent 

 

Display (fireCodes [numericCode -1]) ; // subtract 1 because of 

                                       // zero-based array indexing 
 

Puzzle World: Roman Numerals & Chronograms 

No solutions provided as they are highly dependent on how you have 
structured your own solutions over the previous chapters. 

Pangrams: Holoalphabetic sentences 



Chapter12_Solutions.rtf  9/3/2009 19:37 

 Page 8 of 8 

No solutions provided as they are highly dependent on how you have 
structured your own solutions over the previous chapters. 

Online Bookstore: ISBNs 

No solutions provided as they are highly dependent on how you have 
structured your own solutions over the previous chapters. 

 


