
Chapter13_Solutions.rtf 9/3/2009 19:37

 Page 1 of 5

Chapter 13

End of Chapter Exercises
1. Explain why a stack is a LIFO (Last In, First Out) data structure)

Stacks are built by (metaphorically) placing data items one on top of the
other. They are implemented using a list structure, but items are only
added to the head and removed from the head. Therefore, the last item
added must be the first one that can be removed.

2. In addition to the head pointer, what other pointers are needed to
maintain a queue data structure?

A queue end pointer is also needed as whilst records are removed from
the head new records are added to the end (just like a real queue in a
bank).

3. What would happen if the pointer to the head of a linked list were
accidentally deleted in a program?

We would not be able to gain access to any records in the list because
the entry point is the address held in the head pointer. Without the head
pointer we cannot locate the first record in the list. In effect, the list would
become lost.

4. Given the added complexity involved in building a maintaining a linked
list, why canʼt we just use arrays for storing lists of data?

Because, typically, an array is a static data structure which means its
size is fixed. If more storage is needed than the array has elements we
are in trouble. Also, if only a few elements of the array are used we are
needlessly using up memory space to maintain the empty elements. A
list, on the other hand, can grow and shrink as necessary using only the
amount of memory needed to store its current contents.

5. What changes would be necessary to the FindSortedNode function
(Solution 13.14) if our list of books were required to be sorted by
descending order of book title?

Simply change the condition from

WHILE (current ≠ NULL) AND (searchTitle > current→.bookTitle)

to

WHILE (current ≠ NULL) AND (searchTitle < current→.bookTitle)

6. In the section on creating pointer variables we created a linked list
element of type PatientRecord which was referenced by the variable
patientReference. State what is wrong with the following statement and
provide a correct version:

patientReference.givenName ← 'Henry' ;

Chapter13_Solutions.rtf 9/3/2009 19:37

 Page 2 of 5

patientReference is a pointer/reference variable, not a record. It simply
points to a record somewhere in memory. Therefore, to access the
record it points to we must dereference it with the pointer operator →.

patientReference →.givenName ← 'Henry' ;

7. Using the sub-programs given, write a new function AmendNode which
will change the title of a specified book record in an unsorted list. The
function will have three formal value parameters: listHead,
searchString, and replaceString. searchString will hold the title of the
book whose title we want to change. replaceString holds the new title
of the book. The function will return a Boolean value true if the
replacement was successful or false if a record matching searchString
could not be found.

FUNCTION AmendNode (→BookRecord:listHead, string:searchString,
 string:replaceString) RETURNS Boolean

 →BookRecord:predecessor,

 theBook ;

 Boolean:success ;

 theBook ← FindNode (listHead, searchString);

 IF (theBook ≠ NULL) // Book found

 theBook→.bookTitle ← replaceString ;

 success ← True ;

 ELSE // Book not found

 success ← False ;

 ENDIF

 RETURN success ;

ENDFUNCTION

8. Repeat the above exercise but this time for the sorted list

AmendNode function for sorted list (uses FindSortedNode, Solution 13.14).

FUNCTION AmendNode (→BookRecord:listHead, string:searchString,
 string:replaceString) RETURNS Boolean

 →BookRecord:predecessor,

 theBook ;

 Boolean:success ;

 success ← FindSortedNode (listHead, searchString,

 REFERENCE:predecessor) ;

 IF (success) // Book found

 theBook ← predecessor→.next ;

 theBook→.bookTitle ← replaceString ;

 ENDIF

 RETURN success ;

Chapter13_Solutions.rtf 9/3/2009 19:37

 Page 3 of 5

ENDFUNCTION

9. When comparing one string to another to test for alphabetic ordering,
we would want ʻeʼ to be judged to come before ʻFʼ. The default would be
for ʻeʼ< ʻFʼ to be False as ʻeʼ comes after ʻFʼ in the character set. The
AddSortedNode procedure for an ordered linked list uses the
FindSortedNode function (Solution 13.14). Amend FindSortedNode to
ensure that ʻPaulʼ would come before ʻPOETʼ in the list.

This is really quite straightforward. FindSortedNode uses the following
WHILE condition to find the appropriate place in the list:

WHILE (current ≠ NULL) AND (searchTitle > current→.bookTitle)

All we need to do is compare the upper case versions of the two titles. A
small function ToUpperString (which uses the previous character
function ToUpper from Chapter 10) to return the upper case version of a
string would look thus:

FUNCTION ToUpperString(string:theString) RETURNS string

 integer:counter ;

 string:upper ;

 upper ← '' ;

 FOR counter GOES FROM 0 TO Length (theString)-1

 upper ← upper + ToUpper (theString [counter]) ;

 ENDFOR

 RETURN upper ;

ENDFUNCTION

All we then need to do is use this function in the WHILE loop:

WHILE (current ≠ NULL) AND (ToUpperString(searchTitle)>

 ToUpperString(current→.bookTitle))

Projects
StockSnackz Vending Machine

No exercises for this project

Stocksfield Fire Service

Make linked list of codes & strings.

NEWTYPE fireCodeRecord IS

 RECORD

 character:code ;

 string:fightingMethod ;

 →fireCodeRecord:next ;

Chapter13_Solutions.rtf 9/3/2009 19:37

 Page 4 of 5

 ENDRECORD

NEWTYPE precautionCodeRecord IS

 RECORD

 character:code ;

 string:explosionRisk ;

 string:precaution ;

 string:treatmentMethod ;

 →precautionCodeRecord:next ;

 ENDRECORD

→fireCodeRecord:fcHead ;

→precautionCodeRecord:pcHead ;

// Code for building lists

…

//

FUNCTION processEAC (string:EAC), →fireCodeRecord:fcListHead,

 →precautionCodeRecord:pcListHead)

 RETURNS Boolean

 →fireCodeRecord:fcCurrent ;

 →precautionCodeRecord:pcCurrent ;

 Boolean:valid ;

 valid ← True ;

 // Deal with fire fighting method

 fcCurrent ← fcListHead ;

 WHILE NOT ((EAC [0]= fcCurrent→.code) OR (fcCurrent = NULL))

 fcCurrent ← fcCurrent→.next ;

 ENDWHILE

 IF fcCurrent ≠ NULL

 Display (fcCurrent→.fightingMethod) ;

 ELSE

 Display ('Invalid fire fighting code↵') ;

 valid ← false ;

 ENDIF

 // Deal with precautions

 pcCurrent ← pcListHead ;

 WHILE NOT ((EAC [1]= pcCurrent→.code) OR (pcCurrent = NULL))

 fcCurrent ← fcCurrent→.next ;

 ENDWHILE

Chapter13_Solutions.rtf 9/3/2009 19:37

 Page 5 of 5

 IF pcCurrent ≠ NULL

 IF (pcCurrent→.explosionRisk) ≠ '')

 Display (pcCurrent→.explosionRisk) ;

 ENDIF

 Display (pcCurrent→.precaution) ;

 Display (pcCurrent→.treatmentMethod) ;

 ELSE

 Display ('Invalid precaution ing code↵') ;

 valid ← false ;

 ENDIF

 // Deal with public hazard

 IF(EAC [2] = 'E')

 Display ('Public hazard↵') ;

 ELSE IF EAC [2] = ' ')

 Display ('No hazard↵') ;

 ELSE

 Display ('Invalid public hazard code↵') ;

valid ← False ;

 ENDIF

 RETURN valid ;

ENDFUNCTION

Puzzle World: Roman Numerals & Chronograms

No solutions provided as they are highly dependent on how you have
structured your own solutions over the previous chapters.

Pangrams: Holoalphabetic Sentences

No solutions provided as they are highly dependent on how you have
structured your own solutions over the previous chapters.

Online Bookstore: ISBNs

No solutions provided as they are highly dependent on how you have
structured your own solutions over the previous chapters.

