
Chapter 7

End of Chapter Exercises
1. Think of a real-world piece of machinery that you use regularly. It could be a VCR,

a games console, even a washing machine. Now view the item as if it were a
software object: list its methods (the things it can do) and its properties (the
information it needs to do its job — some of this might be represented on its
display screen/light panel if it has one).

 No solution given -- anything could have been chosen.

2. Design algorithms for each of the methods for the Person class.

 The Person class outline was like this:

class Person

Properties
awake: yes, no ;
inBed: yes, no ;
needsShower: yes, no ;
isDressed: yes, no ;

Methods
WakeUp ;
GoToSleep ;
GetUp ;
GoToBed ;
GetWashed ;
GetDressed ;
GetUndressed ;

 Method algorithms

 GoToSleep
1. awake ← No ;

GetUp
1. inBed ← No ;

GoToBed
1. inBed ← Yes ;

GetWashed
1. needsShower ← No ;

GetDressed
1. isDressed ← Yes ;

GetUndressed
1. isDressed ← No ;

3. Design algorithms for each of the methods for the Alarm class.

 The Alarm class outline was like this:

class Alarm

Properties
ringing: yes, no ;
time: 00:00:00 to 23:59:00 ;
alarmTime: 00:00:00 to 23:59:00 ;
alarmIsSet: on, off ;

Methods
SetTime hh:mm:ss ;
GetTime ;
SetAlarmTime: hh:mm ;
GetAlarmTime ;
SetAlarm ;
UnsetAlarm ;
StartRinging ;
SwitchOff ; (i.e. stop ringing)

Method algorithms

SetTime: hh:mm:ss
1. time ← hh:mm:ss ;

GetTime
1. Display time ;

SetAlarmTime: hh:mm
1. alarmTime ← hh:mm ;

GetAlarmTime
1. Display alarmTime ;

SetAlarm
1. alarmIsSet ← on ;

UnsetAlarm
1. alarmIsSet ← off ;

StartRinging
1. ringing ← yes ;

SwitchOff
1. ringing ← no ;

4. Assume our Person class has another method, BedStatus, that tells us the value

of the inBed property. If we had several instances of the Person class, what
would the algorithm look like that counts up how many of the Person objects are
still in bed?

1. stillInBed ← 0 ;
2. WHILE (Person objects to look at)
 2.1 tell Person BedStatus: answer ;
 2.2 IF (answer = 'yes')
 2.2.1 stillInBed ← stillInBed + 1 ;
 ENDIF
 2.3 Move to next Person object ;
 ENDWHILE
4. Display stillInBed ;

5. We defined the Person class to contain methods dealing with going to bed as well

as getting up in the morning. Extend the controller algorithm in Solution 7.7 to show
the brian object going to bed. Also, assume that the controller is being run on a
Friday and that on Saturdays Brian sleeps late which requires his alarm to be reset
to the later time of 10.00 a.m.

 Here's the original solution 7.7:

 1. brian ← new Person;
2. briansAlarm ← new Alarm ;
3. tell briansAlarm SetTime: currentTime ;

4. tell briansAlarm SetAlarmTime: "07:00:00" ;
5. wait until briansAlarm ringing property = "Yes" ;
6. tell brian WakeUp ;
7. tell briansAlarm SwitchOff ;
8. tell brian GetUp ;
9. tell brian GetWashed ;
10. tell brian GetDressed

 Here's my modified version to incorporate the above requirements (changes shown

in bold):
 1. brian ← new Person;
2. briansAlarm ← new Alarm ;
3. tell briansAlarm SetTime: currentTime ;
4. tell briansAlarm SetAlarmTime: "10:00:00" ;
5. tell brian GoToBed ;
6. wait until briansAlarm ringing property = "Yes" ;
7. tell brian WakeUp ;
8. tell briansAlarm SwitchOff ;
9. tell brian GetUp ;
10. tell brian GetWashed ;
11. tell brian GetDressed

6. We treated the problem of getting dressed as a single action. If we assume that the

task involves putting on underwear, socks, trousers, a shirt, and shoes:

 i) define classes for each of these different clothing types (Underwear, Socks,

Trousers, Shirt, Shoes). Think about what properties and methods each
clothing class should have.

 ii) instantiate the following objects belonging to the different clothing classes:
tanPleats (Trousers), whiteBoxers (Underwear), blackAnkles (Socks),
brownBrogues (Shoes), whiteLongSleeve (Shirt).

 iii) Extend your solution to pass messages to each of these clothing objects
instructing them to be PutOn.

 i) Clothing classes

class Socks

Properties
beingWorn: yes, no ;
dirty: yes, no

wholePair: yes no // one sock may be missing

Methods
PutOn ;
TakeOff ;
Wash ;
Dispose ; // if one sock is missing!

class Underwear

Properties
beingWorn: yes, no ;
dirty: yes, no ;

Methods
PutOn ;
TakeOff ;
Wash ;

class Trousers

Properties
beingWorn: yes, no ;
dirty: yes, no ;
belt ; // (class)

Methods
PutOn ;
TakeOff ;
DryClean ;
ThreadBelt ;
RemoveBelt ;

class Shirt

Properties
beingWorn: yes, no ;
dirty: yes, no ;
wrinkled: yes, no ;

Methods
PutOn ;

TakeOff ;
Wash ;
Iron ;

class Shoes

Properties
beingWorn: yes, no ;
dirty: yes, no ;
wholePair: yes, no ;
Laces ; // (class)

Methods
PutOn ;
TakeOff ;
Polish ;
ThreadLaces ;
RemoveLaces ;
Dispose ;

 ii) Instantiating of objects

 tanPleats ← new Trousers ;
 whiteBoxers ← new Underwear ;
 blackAnkles ← new Socks ;
 brownBrogues ← new Shoes ;
 whiteLongSleeve ← new Shirt ;

 iii) Calling methods.

 tell tanPleats PutOn ;
 tell whiteBoxers PutOn ;
 tell blackAnkles PutOn ;
 tell brownBrogues PutOn ;
 tell whiteLongSleeve PutOn ;

7. Suggest some other methods that could sensibly be included in the Person class

and design algorithms for those methods.

 Any sensible method will do. How about CelebrateSignificantBirthday?

 CelebrateSignificantBirthday
1. IF (today = birth date and birth month)
 1.1. age ← age + 1 ;
 1.2. IF (age = 18)
 1.2.1. // Celebrate coming of age
 1.3. ELSE IF (age = 21)
 1.3.1. // Celebrate 21
 1.4. ELSE IF (age = 30)
 1.4.1. // celebrate 30

 etc. etc.
 ENDIF

Projects

StockSnackz Vending Machine
Look at the vending machine problem through an object-oriented lens. Suppose we
decide that there are three classes involved in a vending machine: the Snacks it
dispenses, a Vendor mechanism for dispensing the snacks, and the MoneyHandler
that receives coins, ensures sufficient money has been paid, and gives change. The
MoneyHandler would also have to tell the Vendor mechanism to release a Snack. Try
defining the methods and properties for each of these three classes.

Here's a first go. Note, I haven't been exhaustive and there are still a few requirements
to be dealt with (such as checking if sufficient money has been paid), but this should be
enough to get you on the way to completing it all.

class Snack

Properties
price: {0...99} ;
name: {25 characters} ;
stockLevel: {0...25} ;
soldCount: {0...?} ;

Methods
Dispense ;
Restock: amount ;
SetPrice: amount ;
ShowStockLevel ;
ShowSoldCount ;

Method algorithms

Dispense
1. stockLevel ← stockLevel − 1 ;
2. soldCount ← soldCount + 1 ;

Restock: amount
1. stockLevel ← stockLevel + amount ;

SetPrice: amount
1. price ← amount ;

ShowStockLevel
1. ← stockLevel ;

ShowSoldCount
1. ← soldCount ;

class Vendor

Properties
snacksDispensed: {0...?} ;
...

Methods
Vend: snack ;
...

Method algorithms

Vend
1. IF (snackChoice = Button1)
 1.1. tell button1Snack Dispense ;
2. ELSE IF (snackChoice = Button2)
 2.1. tell Button2Snack Dispense ;
3. ELSE IF (snackChoice = Button3)
 3.1. tell Button3Snack Dispense ;
4. ELSE IF (snackChoice = Button4)
 4.1. tell Button4Snack Dispense ;
5. ELSE IF (snackChoice = Button5)
 2.1. tell Button5Snack Dispense ;
 ENDIF

6. snacksDispensed ← snacksDispensed + 1 ;

class MoneyHandler

Properties
fiftyPenceCoinStock: {0...100} ;
twentyPenceCoinStock: {0...200} ;
tenPenceCoinStock: {0...300} ;
fivePenceCoinStock: {0...300} ;
twoPenceCoinStock: {0...250} ;
onePennyCoinStock: {0...500} ;
floatValue: {0...?} ;
moneyTaken: {0...?} ;

Methods
Receive50p: numberCoins ;
Receive20p: numberCoins ;
...
Receive1p: numberCoins ;
Dispense50p: numberCoins ;
...
Dispense1p: numberCoins ;
DisplayFloatValue ;
DisplayMoneyTaken ;
GiveChange: amount ;
VendSnack: snackChoice ;
...

Method algorithms

Receive50p: numberCoins
1. fiftyPenceCoinStock ← fiftyPenceCoinStock + numberCoins ;

...

DisplayFloatValue
1. ← floatValue ;

DisplayMoneyTaken
1. ← moneyTaken ;

GiveChange: amount

1. Dispense50p: amount ÷ 50 ;
2. remainder ← amount MOD 50 ;
3. Dispense20p: remainder ÷ 20 ;
4. remainder ← remainder MOD 20 ;
5. Dispense10p: remainder ÷ 10 ;
6. remainder ← remainder MOD 10 ;
7. Dispense5p: remainder ÷ 5 ;
8. remainder ← remainder MOD 5 ;
9. Dispense2p: remainder ÷ 2 ;
10. Dispense1p: remainder MOD 2 ;

Dispense50p: numberCoins
1. FOR counter GOES FROM 1 TO numberCoins
 1.1. drop 50p coin into chute ;
 1.2. fiftyPenceCoinStock ← fiftyPenceCoinStock − 1 ;
 ENDFOR
...

VendSnack
1. tell Vendor Vend: snackChoice ;

Stocksfield Fire Service: Hazchem Signs
No exercise

Puzzle World: Roman Numerals and Chronograms
No exercise.

Pangrams: Holoalphabetic Sentences
No exercise

Online Bookstore: ISBNs
No exercise

