
Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 1 of 11

Chapter 9

End of Chapter Exercises
1. What is the difference between a literal and a variable?

A variable is an area of memory set aside to hold values. The value of
the variable can be changed as the program runs. The value held in the
variable is accessed via the variableʼs name, or identifier. A literal is
simply a raw value which is not stored anywhere. For example, in the
statement

number ← 3 + number2 ;

the variable number is assigned the value of the expression 3 + number2
where number2 is also a variable and 3 is a literal value.

2. Could values such as 5.5, 3.142, 1090.1 be assigned to the following
variable?

integer:intNumber ;

No. They are real values and intNumber is an integer.

3. Why are real numbers not ordinal?

Because the ordinal numbers are ʻcountingʼ numbers and denote relative
position in a sequence. The integers are ordinal because we know that
the number 7 comes after the number 6. Real numbers, on the other
hand, cannot be counted in this way as between 6.0 and 7.0 there is an
infinite set of real values (e.g. 6.0000000000000000000001,
6.200000000006, and so on) so it is not possible to count them in the
same way that ordinal numbers can be counted.

4. What are the largest positive values that can be stored in the following
variables?

integer:number ;

shortint:number2 ;

byte:number3 ;

longint:number4 ;

integer = 2,147,483,647, shortint = 32,767, byte = 127, longint =
9,223,372,036,854,775,807. See Table 9.2.

5. What is the difference between the integer value 4 and the character
ʻ4ʼ?

Integer 4 is, well, the number 4. Character 4 is a symbol used to display

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 2 of 11

the number 4 on the screen, on a printer, etc. Integer variables are used
to store numeric values whilst character variables store character
symbols. The characters, as well as being the digits 0 to 9 also comprise
letters, punctuation symbols, and so forth. Groups of characters form
strings, whilst groups of numbers form larger numbers.

6. What is the character type used for?

Storing individual occurrences of character symbols. For instance, you
might want to keep a loop going every time the user presses the 'Y' key
on the keyboard in response to a prompt. The key pressed by the user
could be stored in a character variable.

7. Declare a string variable myName and assign your name to it.

You could do this 2 ways in the HTTLAP pseudo-code:

string:myName ;
myName ← 'Paul' ;

or

string:myName ← 'Paul' ;

8. Given the following declaration and assignment statements:

boolean:onVacation ;
onVaction ← true ;

How can the following if statement be improved?

IF (onVacation = true)
 Display ('No milk today, thankyou') ;
ENDIF

Simple, just remove the ʻ= trueʼ part:

IF (onVacation)
 Display ('No milk today, thankyou') ;
ENDIF

9. Given the declaration:

integer:membersOfFamily IS 5 ;

What is wrong with the following statement?

membersOfFamily ← membersOfFamily + 1 ;

membersOfFamily is a constant not a variable (double border is a clue).
Constant values are immutable (they cannot be changed) and so remain
constant throughout (hence their name). Therefore, once defined, a

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 3 of 11

constant identifier cannot have its value changed.

10. Given the declaration:

integer:result ;

For each of the following statements state what value will be assigned
to result.

1. result ← 3 + 4  7 ;

2. result ← 4  7 + 3 ;

3. result ← (4  7) + 3 ;

4. result ← 4  (7 + 3) ;

 5. result ← 4  7 + 3  8 ;

 6. result ← 4  (7 + 3)  8 ;

 7. result ← 4  7 ÷ 2  3 ÷ 21 ;

 8. result ← 4  7 ÷ 2  3^3 ÷ 21 ;

1: Multiplication comes before addition, so 3 + 28 = 31
2: Multiplication comes before addition, so 28 + 3 = 31
3: Expressions in parentheses evaluated first, so 28 + 3 = 31
4: Expressions in parentheses evaluated first , so 4 times 10 = 40
5: Multiplications done before the addition, so 28 + 24 = 52
6: Parentheses, then multiplication, then addition, so 4 times 10 times 8
= 320
7: All operators here of equal precedence so just work from left to right,
so 28 divided by 2 = 14, then multiply by 3 = 42, then divide by 21 = 2
8: exponentiation comes first, so 3^3 = 27. Then work left to right: 28
divided by 2 = 14, multiply by 27 = 378, then divide by 21 = 18

11. Given the declaration:

boolean:bigger ;

For each of the following statements state what value will be assigned
to bigger.

1. bigger ← 3 > 4 ;

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 4 of 11

2. bigger ← 3  2 > 4 ;

3. bigger ← 'a' > 'Z' ;

4. bigger ← 3  4 = 2  6 ;

1: bigger will be assigned the value ʻFalseʼ because 3 is not greater than
4
2: 6 is greater than 4, so True
3: True. Character ʻaʼ has position (ordinal value) 97 in the ASCII
character set while ʻZʼ is character 90 (see Table 9.5). 97 is greater than
90, so the test evaluates to True.
3: 3 times 4 = 12 and 2 times 6 = 12. 12 does equal 12, so the value
True is assigned to bigger.

12. Anyone resident in the UK and who is a citizen of the UK, the Republic
of Ireland or of a Commonwealth country and is aged 18 or over on the
date of a parliamentary election is eligible to vote, unless they are a
member of the House of Lords, imprisoned for a criminal offence,
mentally incapable of making a reasoned judgement, or have been
convicted of corrupt or illegal practices in connection with an election
within the previous five years. Declare variables to represent the
components of this problem. Then write an assignment statement that
uses these variables in a relational expression to assign the value True
or False as appropriate to the Boolean variable eligibleToVote which
will store an individualʼs eligibility to vote. Finally, draw a table showing
different values of the variables and the Boolean value that would be
assigned to eligibleToVote as a result.

The principal components of the problem are to do with whether the
person is an adult, is a resident, is a Lord, is imprisoned, has a
conviction, and is mentally incapable. We can declare Boolean variables
to hold these values as well as the variable eligibleToVote:

boolean:isAdult,

 isResident,

 isALord,

 isImprisoned,

 isMentallyIncapable,

 hasConviction,

 eligibleToVote ;

Assuming the program has assigned values to the first six variables, we
can assign eligibleToVote thus:

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 5 of 11

eligibleToVote ← ((isResident) AND (isAdult)
 AND NOT (isALord)

 AND NOT (isImprisoned) AND

 NOT (isMentallyIncapable) AND

 NOT (hasConviction)) ;

With all the NOTs we could use parentheses and DeMorgan to simplify
the expression:

eligibleToVote ← ((isResident) AND (isAdult) AND

 NOT ((isALord) OR (isImprisoned) OR

 (isMentallyIncapable) OR

 (hasConviction)) ;

13. Think about this problem of representation. Why do you think it is that
real numbers are often only stored as an approximation of their true
value? Can you think of ways that exact real numbers could be
represented? For example, the fraction 1/3 leads to an approximation
when represented in the decimal number system (0.333333333…),
whilst the fraction 1/10 can be represented exactly in decimal (0.1) but
not in binary.

In decimal unless the real number can be expressed as an exact power
of 10 we end up with these recurring sequences, e.g. 1/3 = 0.33333r.
The same goes for binary. If the real number is exact and can be
expressed as an exact power of 2 then it will work, if not then we get
approximations again.

14. Design an algorithm that will convert any lower-case letter to its upper-
case equivalent. Use a character variable theLetter to hold the letter.
For example, if theLetter was assigned the value 'e' the algorithm
would assign it a new value of 'E'. Before converting the lower-case
letter, first ensure it really is a lower-case letter and not some other
character.

The first thing I would do it using a real programming language would be
to look through the languageʼs manual and see if it already has existing
functions or procedures for doing this. Most languages have a ToUpper
routine of some description. If this were the case then it would be a
simple matter of:

theLetter ← ToUpper (theLetter) ;

job done! However, to do it from scratch we need to use what we know
about character codes. All the lower case letters have ASCII codes
between 97 (ʻaʼ) and 122 (ʻzʼ). The upper case letters live in the range 67
(ʻAʼ) to 90 (ʻZʼ). The simple form of the problem is to assume that

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 6 of 11

theLetter contains a lower case letter we just need to set it to the
character 30 places earlier in the character set. For example, ʻaʼ = 97,
subtract 30 gives 67 which is ʻAʼ. The full problem requires us first to
ascertain whether the character in theLetter is really a lower case letter.
Put this all together using the Ord and Chr routines discussed in section
9.1.5and and we get:

integer:newCharNumber ;

IF (theLetter ≥ 'a') AND (theLetter ≤ 'z')

 newCharNumber ← Ord (theLetter) – 30 ;

 theLetter ← Chr (newCharNumber) ;

ENDIF

We could do it without the new variable newCharNumber like this:

IF (theLetter ≥ 'a') AND (theLetter ≤ 'z')

 theLetter ← Chr (Ord (theLetter) – 30) ;

ENDIF

Projects
StockSnackz Vending Machine

Amend your solution to take into account any necessary data types
introduced in this chapter. Consider carefully the data types needed to
handle the monetary values.

integer:chocolateStock,

 muesliStock,

 cheesePuffStock,

 appleStock,

 popcornStock ;

Stocksfield Fire Service

Write your solution to the EAC decoding problem as an algorithm using the
more formalized HTTLAP pseudo-code introduced in this chapter. Make sure
you declare all your variables with appropriate data types. You need to think
carefully about what you are going to use to store the EAC. The easiest
method to get you started is to store each of the three characters of the EAC
in separate character variables.

character:fireFightingCode,

 precautionsCode,

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 7 of 11

 publicHazardCode ;

Get (keyboard, REFERENCE:fireFightingCode,

REFERENCE:precautionsCode, REFERENCE:publicHazardCode) ;

// First character

IF (fireFightingCode = '1')

 Display ('Use coarse spray↵') ;

ELSE IF (fireFightingCode = '2')

 Display ('Use fine spray↵') ;

ELSE IF (fireFightingCode = '3')

 Display ('Use foam↵') ;

ELSE IF (fireFightingCode = '4')

 Display ('Use dry agent↵') ;

ELSE

 Display ('Invalid fire fighting code↵') ;

ENDIF

// Second character

IF (precautionsCode = 'P')

 Display ('Use LTS↵') ;

 Display (Dilute 'spillage↵') ;

 Display ('Risk of explosion↵') ;

ELSE IF…

…

ELSE IF (precautionsCode = 'Z')

 Display ('Use BA & Fire kit↵') ;

 Display ('Contain spillage↵') ;

ELSE

 Display ('Invalid precautions code↵') ;

ENDIF

// Third character

IF (publicHazardCode = 'E')

 Display ('Public hazard↵') ;

ELSE IF (publicHazardCode = ' ')

 Display ('No hazard↵') ;

ELSE

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 8 of 11

 Display ('Invalid public hazard code↵') ;

ENDIF

Alternatively, we could access the EAC as a string:

string:EAC ;

Get (keyboard, REFERENCE:EAC) ;

IF (EAC[0]= '1')

 Display…

Puzzle World: Roman numerals & chronograms

Chronograms (also called eteostichons) are sentences in which certain
letters, when rearranged, stand for a date and the sentence itself is about the
subject to which the date refers. All letters that are also roman numerals (I, V,
X, L, C, D, M) are used to form the date. Sometimes the sentence is written
such that the roman numeral letters already give a well-formed roman
number. For example, in the sentence:

My Day Closed Is In Immortality

if we ignore the lower-case letters we get the number MDCIII which equals
1603. The sentence commemorates the death of Queen Elizabeth the First of
England in 1603. More commonly, the roman numbers are not well formed
and the date is obtained by adding the values of all the roman numerals in
the sentence, as in:

LorD haVe MercI Vpon Vs. (V used as a U, mercy spelt with an ʻiʼ)

This is a chronogram about the Great Fire of London in 1666. The date is
given by L+D+V+M+I+V+V = 50 + 500 + 5 + 1000 + 1 + 5 + 5 = 1666.

Outline the basic algorithm for finding and displaying in decimal the date
ʻhiddenʼ in a chronogram. To begin, assume that only upper-case letters are
used for roman numerals (I=1, but i is a letter). Also, assume that the roman
numerals do not have to form a valid string of numerals and that the hidden
date is obtained simply by summing the values of all roman numerals found
(as in the ʻLord have mercy upon usʼ example above).

For an extra challenge, extend this solution to accept only chronograms that
have a well-formed roman number in them. Thus “My Day Closed Is In
Immortality” would give the valid date MDCIII, whilst “LorD haVe MercI Vpon
Vs” would not give us a result as LDVMIVV is not a well-formed number
(1666 should be written as MDCLXVI).

Basic problem:
string:chronogram ;

integer:counter,

 value ;

char:current ;

value ← 0 ;

chronogram ← 'LorD haVe MercI Vpon Vs' ;

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 9 of 11

FOR counter GOES FROM 0 TO Length (chronogram) - 1

 current ← chronogram [counter] ;

 IF (current ≥'A') AND (current ≤ 'Z')

 value = value + value of current digit ;

 ENDIF

ENDFOR

Extended version:

string:chronogram,

 numberString ;

integer:counter,

 value ;

char:current ;

value ← 0 ;

numberString ← '' ;

chronogram ← 'LorD haVe MercI Vpon Vs' ;

FOR counter GOES FROM 0 TO Length (chronogram) - 1

 current ← chronogram [counter] ;

 IF (current ≥'A') AND (current ≤ 'Z')

 numberString ← numberString + current ;

 ENDIF

ENDFOR

Now we have the hidden date stored in numberString we can simply validate
and decode it as per our previous algorithms.

Pangrams: holoalphabetic sentences

Update the variable list for your pangram solution by assigning proper
HTTLAP types. Rewrite your algorithm using the more formal HTTLAP
pseudo-code, assignment statements, Boolean expressions in IF and WHILE
conditions, and so forth.

string:sentence ;

character:current,

 userResponse ;

integer:counter,

 notCrossedout ;

DO

 Get (keyboard, REFERENCE:sentence) ;

 FOR current GOES FROM 'A' TO 'Z' ;

 Write current

 ENDFOR

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 10 of 11

 FOR counter GOES FROM 0 TO Length (sentence) -1

 current ← sentence [counter] ;

 Cross off letter on the paper that matches current letter ;

 ENDFOR

 notCrossedOut ← 0 ;

 FOR current GOES FROM 'A' TO 'Z' ;

 IF (current not crossed out)

 notCrossedOut ← notCrossedOut + 1 ;

 ENDIF

 ENDFOR

 IF (notCrossedOut = 0)

 Display ('Sentence is a pangram') ;

 ELSE

 Display ('Sentence is NOT a pangram') ;

 ENDIF

 Display ('Do you want to test another sentence? Y/N') ;

 Get (keyboard, REFERENCE:userResponse) ;

WHILE (userResponse ≠ 'N') ;

Online bookstore: ISBNs

Validation problem

string:ISBN ;

integer:total,

 counter,

 remainder ,

 calcCheck ;

character:currentDigit,

 checkDigit,

 calcCheckDigit ;

Display ('Enter a ten-character ISBN') ;

Get (keyboard, REFERENCE:ISBN) ;

total ← 0 ;
FOR counter GOES FROM 1 TO 9

 currentDigit ← ISBN [counter] ;

 total ← total + Ord(currentDigit) - 48 ;

ENDFOR

checkDigit ← ISBN [9] ;

remainder ← 11 − (total ÷ 11) ;

Chapter9_Solutions.rtf 2/3/2008 5:07

 Page 11 of 11

calcCheck ← 11 − remainder ;
IF (calcCheck = 10)

 calcCheckDigit ← 'X' ;

ELSE

 calcCheckDigit ← Chr (calcCheck + 48) ;

ENDIF

IF (calcCheck = checkDigit)

 Display ('ISBN valid') ;

ENDIF

