
Chapter 6

End of Chapter Exercises
1. There are two things wrong with the following IF…ELSE statement. What are they?
 IF (mark ≥ 40)
 Display 'You have passed.' ;
 ELSE IF (mark ≤ 40)
 Display 'You have failed.' ;
 ENDIF

 First it is ambiguous – what should happen when mark is 40 as 40 satisfies both

conditions? Second, the ELSE doesn't need the IF: it should just be
 IF (mark ≥ 40)
 Display 'You have passed.' ;
 ELSE
 Display 'You have failed.' ;
 ENDIF

2. When should you use a FOR loop rather than a WHILE or DO…WHILE loop?

When should you used a DO…WHILE rather than a WHILE or FOR loop?

 FOR loop: when you want to implement a count-controlled loop and the number of

repetitions is known in advance or can be determined prior to the start of the loop.

 DO...WHILE: When you want to iteratate an undetermined number of times but at

least once.

 DO...WHILE is a 1-or-more loop, while the WHILE is a zero-or-more loop.

3. As any loop written using a FOR or a DO…WHILE can also be constructed using the

basic WHILE construct, what is the benefit of using the FOR and DO…WHILE?

 They allow a more precise control abstraction. WHILE offers a general control

abstraction that can be used to implement any iteration, but if upon examination the
nature of the loop reveals certain characteristics (such as those listed in question
2) then use the appropriate iteration construct. The principle here is use the control
abstraction that most closely fits the problem.

4. State the difference between a determinate and an indeterminate loop.

 A determinate loop is one in which the number of iterations is known or can be

calculated before the loop executes. An indeterminate loop is one in which the
number of iterations is not known or cannot be calculated in advance. For example,

a loop to calculate the average temperature for each day of the year would be
determinate as we know it needs to run 365 or 366 times depending on whether it
is a leap year or not. Even though it could be either 365 or 366 it is still determinate
because before the loop begins its first execution the number of iterations has been
calculated. An indeterminate loop could be one in a program that asks people how
they will vote in the next election, stopping only when a certain time of day is
reached or no-one has expressed a preference for, say, 1 hour.

5. In Stocksfield High School all the children's work is marked out of 5. An A grade is

awarded for work scoring between 4 and 5. A score of at least 3 would get a B
grade, and a C is given for a score of at least 2. Any other score gets an F (fail).
For example, scores of 4.0, 4.8, and 5 would get grade A, 3.2 and 3.9 would get a
B, 2.9 a C and 1.9 an F. Write an IF…ELSE construct that assigns the appropriate
grade to the variable studentGrade depending on the value of the variable
studentMark.

IF (studentMark ≥ 4) // A Grade
 studentGrade ← A ;
ELSE IF (studentMark ≥ 3) // B Grade
 studentGrade ← B ;
ELSE IF (studentMark ≥ 2) // C Grade
 studentGrade ← C ;
ELSE //Anything under 2 is a fail
 studentMark ← F ;
ENDIF

6. Stocksfield High School has just changed its grading system. Now, an A grade is

given for marks between 4 and 5, a B for marks of at least 3.5, a C for marks of at
least 3.0, a new pass grade D for marks of at least 2.0 and an F for every mark
lower than 2.0 Amend your solution to exercise 5 to account for this change.
IF (studentMark ≥ 4) // A Grade
 studentGrade A ;
ELSE IF (studentMark ≥ 3.5) // B Grade
 studentGrade ← B ;
ELSE IF (studentMark ≥ 3) // C Grade
 studentGrade ← C ;
ELSE IF (studentMark ≥ 2) // D Grade
 studentGrade ← D ;
ELSE //Anything under 2 is a fail
 studentMark ← F ;
ENDIF

7. Write your solution to exercise 6 using a sequence of IF statements without ELSE

parts. What do you have to do to the condition of each IF statement in order to
ensure they work properly?

IF (studentMark ≥ 4) // A Grade
 studentGrade ← A ;
ENDIF
IF (studentMark ≥ 3.5) AND (studentMark < 4) // B Grade
 studentGrade ← B ;
ENDIF
IF (studentMark ≥ 3) AND (studentMark < 3.5) // C Grade
 studentGrade ← C ;
ENDIF
IF (studentMark ≥ 2) AND (studentMark < 3) // D Grade
 studentGrade ← D ;
ENDIF
IF (student < 2) //Anything under 2 is a fail
 studentMark ← F ;
ENDIF

 The conditions have to include both the upper and lower limits for each grade.

8. Extend your solution to exercise 5 to assign to calculate and display the student

grades for a class of twenty students.

 As we know it is for 20 students, we could use the specialised determinate iteration

abstraction -- the FOR loop:

numberGrades ← 0 ;
classSize ← 20 ;
FOR numberGrades GOES FROM 1 TO classSize
 Get studentMark ;
 IF (studentMark ≥ 4) // A Grade
 studentGrade ← A ;
 ELSE IF (studentMark ≥ 3.5) // B Grade
 studentGrade ← B ;
 ELSE IF (studentMark ≥ 3) // C Grade
 studentGrade ← C ;
 ELSE IF (studentMark ≥ 2) // D Grade
 studentGrade ← D ;
 ELSE //Anything under 2 is a fail
 studentMark ← F ;
 ENDIF
ENDFOR

9. Using HTTLAP design an algorithm for a guessing game. The algorithm should

choose a number between 1 and 10 and the player has three tries in which to
guess the number. If the player guesses correctly then the response 'Correct!'
should be given. When an incorrect guess is made the response should be 'Hot!' if
the guess was 1 away from the actual number, 'Warm…' when the guess is two
away, and 'COLD!' when the guess is 3 or more away. Make sure your loop
finishes if the player guesses correctly in less than three turns.

 The basic algorithm might look like this:

 maxGuesses ← 3 ;
 numberGuesses ← 0 ;
 userGuess ← 0 ;
 number ← random number between 1 and 10 ;
 correct ← 0 ; // 0 = wrong, 1 = correct guess.
 DO
 Display 'Enter your guess ' ;
 Get userGuess ;
 IF (userGuess 3 or more away from number)
 Display 'COLD!' ;
 ELSE IF (userGuess within 2 of number)
 Display 'Warm...' ;
 ELSE IF (userGuess within 1 of number)
 Display 'Hot!' ;
 ELSE
 Display 'Correct!' ;
 correct ← 1 ;
 ENDIF
 WHILE (numberGuesses ≤ maxGuesses) AND (correct = 0) ;
 IF (correct = 0)
 Display 'You failed.' ;
 ENDIF

 I used a DO...WHILE loop because the user needs at least 1 guess. The remaining

problem is how to express the 'within 3 of number' type of condition. How do we
know if the guess is 3 or more away? Say the computer's number were 7 and the
user guessed 4. Subtracting 4 from 7 gives 3 which means we need a 'COLD!'
response. But what if the computer picked 2 and the user picked 4? Subtracting 4
from 2 gives -2 which is 4 away from 2, yet 4 is only 2 away which deserves a
'Warm...' response. We only want to subtract the user's guess from the computer's
number when it is smaller otherwise it needs to be the other way round. What we
need is to find the absolute difference. Many programming languages have an
'abs' function that takes strips the sign off a number and gives it back. So, the

absolute value of 2-4 is 2 because 2-4 =-2 and stripping the sign off gives 2. We
could assume our pseudo-code has such a facility, or we could be real
programmers and work out how to do it. To find the absolute difference between
two numbers all we have to do is subtract the smaller one from the larger one. We
could do it this way:

 IF (userGuess ≥ number)
 difference ← userGuess − number ;
 ELSE
 difference ← number − userGuess ;
 ENDIF

 We could then use this solution in our algorithm above like this:

 difference ← 0 ;
 maxGuesses ← 3 ;
 numberGuesses ← 0 ;
 userGuess ← 0 ;
 number ← random number between 1 and 10 ;
 correct ← 0 ; // 0 = wrong, 1 = correct guess.
 DO
 Display 'Enter your guess ' ;
 Get userGuess ;
 IF (userGuess ≥ number)
 difference ← userGuess − number ;
 ELSE
 difference ← number − userGuess ;
 ENDIF
 IF (difference ≥ 3)
 Display 'COLD!' ;
 ELSE IF (difference = 2)
 Display 'Warm...' ;
 ELSE IF (difference = 1)
 Display 'Hot!' ;
 ELSE
 Display 'Correct!' ;
 correct ← 1 ;
 ENDIF
 numberGuesses ← numberGuesses + 1 ;
 WHILE (numberGuesses < maxGuesses) AND (correct = 0) ;
 IF (correct = 0)
 Display 'You failed.' ;
 ENDIF

10. Honest Brian's Insurance sells car insurance policies. The company is owned by

Brian who is a cautious type and so hikes the premiums for young male drivers
(who are statistically much more likely to make a claim). The basic premium charge
is 3% of the value of the vehicle. This figure is raised by 11% for male drivers
under 25 years of age, and by 6% for female drivers under the age of 21. A further
£/$/€ 250 is added to the premium of any driver who has had any kind of speeding
ticket. Design an algorithm to calculate the insurance premiums for the drivers in
Table 6.5 (which also shows the premium your algorithm should generate).

 Name Age Sex Car Value Speeding ticket? Premium
 Nick 60 M 15,000 No £450.00
 Chris 24 M 24,000 No £799.20
 Lynne 23 F 8,000 No £240.00
 Alf 17 M 35,000 Yes £1,415.50
 Shadi 23 M 15,000 No £499.50
 Becky 18 F 12,000 Yes £631.60

 premium ← carValue × 0.03 ;
 IF (driverSex = 'M') AND (driverAge < 25)
 premium ← premium × 1.11 ;
 ELSE IF (driverSex = 'F') AND (driverAge < 21)
 premium ← premium × 1.06 ;
 ENDIF
 IF (speedingTicket = 'Yes')
 premium ← premium + 250 ;
 ENDIF

11. The Beaufort scale is used to classify wind speeds. Use Table 6.6 to design an

algorithm that declares a variable windSpeed, assigns that variable a value
representing the wind speed in miles-per-hour (use zero for values < 1) and then
displays the corresponding Beaufort number and description. For example, if
windSpeed had the value 20 the algorithm would display

 Beaufort scale:5, Fresh breeze.

 Hint: the conditions in your selections will need to be compound.

Beaufort scale Wind speed (miles per hour) Description
0 <1 Calm
1 1-3 Light air
2 4-7 Light breeze
3 8-12 Gentle breeze

4 13-18 Moderate breeze
5 19-24 Fresh breeze
6 25-31 Strong breeze
7 32-38 Near gale
8 39-46 Gale
9 47-64 Strong gale
10 55-63 Storm
11 64-72 Violent storm
12 ≥73 Hurricane

Display 'Enter a wind speed' ;
windSpeed ← value typed by user ;
IF (windSpeed = 0)
 Display 'Beaufort scale:0, Calm' ;
ELSE IF (windSpeed ≤ 3)
 Display 'Beaufort scale:1, Light air' ;
ELSE IF (windSpeed ≤ 7)
 Display 'Beaufort scale:2, Light breeze' ;
ELSE IF (windSpeed ≤ 12)
 Display 'Beaufort scale:3, Gentle breeze' ;
ELSE IF (windSpeed ≤ 18)
 Display 'Beaufort scale:4, Moderate breeze' ;
ELSE IF (windSpeed ≤ 24)
 Display 'Beaufort scale:5, Fresh breeze' ;
ELSE IF (windSpeed ≤ 31)
 Display 'Beaufort scale:6, Strong breeze' ;
ELSE IF (windSpeed ≤ 39)
 Display 'Beaufort scale:7, Near gale' ;
ELSE IF (windSpeed ≤ 46)
 Display 'Beaufort scale:8, Gale' ;
ELSE IF (windSpeed ≤ 54)
 Display 'Beaufort scale:9, Strong Gales' ;
ELSE IF (windSpeed ≤ 63)
 Display 'Beaufort scale:10, Storm' ;
ELSE IF (windSpeed ≤ 72)
 Display 'Beaufort scale:11, Violent storm' ;
ELSE
 Display 'Beaufort scale:12, Hurricane' ;
ENDIF

12. You have been asked by an online bookstore to design an algorithm that calculates

postage costs. Postage is calculated by adding a fixed weight-based charge to a

handling fee for each book in the order. Table 6.7 shows how the charge is
calculated.

 Weight Postage rate Handling fee per book
 Up to 200g 1.75 0.25
 Up to 400g 2.50 0.40
 Up to 1000g 4.00 0.45
 Over 1000g 6.00 0.5

 For example, an order for one book weighing 180 g would cost 1.75 + 0.25 = 2.00

to deliver. An order weighing 1500 g total with three books in it would cost 6.00 +
0.5 × 3 = 7.50 to deliver. Using HTTLAP design an algorithm that calculates the
postage charge for book orders. The parcel weight and number of books in the
order should be provided by the user. The algorithm should calculate postage
costs for an unspecified number of orders, terminating when the parcel weight
given by the user is a negative number.

 Get numberBooks ;
 Get weight ;
 WHILE (weight > 0)
 IF (weight ≤ 200)
 postageRate ← 1.75 ;
 handlingFee ← 0.25 × numberBooks ;
 ELSE IF (weight ≤ 400)
 postageRate ← 2.5 ;
 handlingFee ← 0.4 × numberBooks ;
 ELSE IF (weight ≤ 1000)
 postageRate ← 4.0 ;
 handlingFee ← 0.45 × numberBooks ;
 ELSE
 postageRate ← 6.0
 handlingFee ← 0.5 × numberBooks ;
 ENDIF
 postageCharge ← 0.25 postageRate + handlingFee ;
 Get numberBooks ;
 Get weight ;
 ENDWHILE

13. Stocksfield High School gives email addresses to all its pupils in the form:

 givenName.familyName@stocksfieldhigh.ac.uk

 Teachers are given email addresses of the form:

 firstInitial.secondInitial.familyName@stocksfieldhigh.ac.uk

 where the second initial may not be present.

 Table 6.8 shows some example teacher and pupil names and the corresponding

email addresses.

 Teachers email Pupils email
 Henry Higgins h.higgins@... Emily Harris emily.harris@...
 Alfred P. Doolittle a.p.doolittle@... Sarah Jane Smith sarah.smith@...
 Jennifer P.D. Quick j.p.quick@... John Dobby John.dobby@...

 Design an algorithm that declares a variable emailAddress, assigns to the variable

a value provided by the user, and displays the family name of the owner of that
email address and whether they are a pupil or a teacher. For example, if the user
typed in

 emily.harris@stocksfieldhigh.ac.uk

 the algorithm would display

 Harris:Pupil.

 If the user typed

 a.p.doolittle@stocksfieldhigh.ac.uk

 The algorithm would display

 Doolittle:Teacher.

 Note, the algorithm should be able to handle any valid Stocksfield High email

address, not just the ones listed in Table 6.8.

 This is quite a tough algorithm if you try and specify it completely. Really, we need

some knowledge of how to process strings of characters which is not covered in
this book (though it is in Part II of the longer version of this book titled "How to think
like a programmer: program design solutions for the bewildered"). The best way to
tackle it is at a high level, as if you were doing it yourself. The difference between
staff and pupils is that pupil email addresses show their complete first whereas

staff email addresses just show the initials of their first names. Here's a way
forward:

 Get emailAddress ;
 Display characters between '@' and preceding '.' ; // that's

the family name
 IF (length of name before first '.' > 1 character) // dealing

with a pupil
 Display ':Pupil.' ;
 ELSE // dealing with staff
 Display ':Teacher.' ;
 ENDIF

 That's all we need for the general algorithm. If you want more of a challenge, then

consider how you would go about splitting the email address up into its component
parts.

14. Design an algorithm that declares an integer variable timesTable, gets a value

for this variable, and displays the times table up to 15 × n. For example, if
timesTable had the value 12, then the following output would be displayed:
1 × 12 = 12
2 × 12 = 24
3 × 12 = 36
4 × 12 = 48
5 × 12 = 60
6 × 12 = 72
7 × 12 = 84
8 × 12 = 96
9 × 12 = 108
10 × 12 = 120
11 × 12 = 132
12 × 12 = 144
13 × 12 = 156
14 × 12 = 168
15 × 12 = 180

 Get timesTable ;
 FOR counter GOES FROM 1 TO timesTable
 product ← counter × 12 ;
 Display counter ' × ' 12 ' = ' product ;
 ENDFOR

Projects

StockSnackz Vending Machine
Now that you have been introduced to the IF...ELSE construct, revise your previous
vending machine solution to deal more elegantly with the problem of dispensing the
chosen snack. Using IF...ELSE will also make the problem of dealing with buttons 0,
7, 8, and 9 much simpler.

Now that a proper selection construct has been used it is time to make the vending
machine much more interesting. The University of Stocksfield is losing too much money
through greedy staff stocking up on free snacks. With the exception of the sales
summary (button 6) all items must now be paid for and cost 10 pence each. If a user
presses a button for a snack before sufficient money has been inserted an 'insufficient
funds' message should be displayed. If the user has deposited sufficient money for an
item then the machine will dispense the chosen snack. Assume no change is given.
Extend your solution to reflect these new requirements.

Now extend your solution so that if the user has deposited more than 10 pence/cents
the machine gives any required change after dispensing the chosen item. You may
assume that the machine always has sufficient stock of each denomination of coin to be
able to make exact change. The machine accepts (and gives back) the following
denominations of coins: 1, 2, 5, 10, 20, 50 pence
. Change should be dispensed using the fewest coins possible. Note, you have already
solved the change-giving problem (see the exercises for Chapter 3) so see if that
solution can be reused (perhaps with some amendments) here. There is a mathematical
operator called modulo which gives the remainder after division. It often has the symbol
%, but our pseudo-code used MOD. It works like this: 20 ÷ 7 = 2 : 7 goes into 20 twice.
20 MOD 7 = 6 : the left over after dividing 20 by 7 is 6. You will find this useful for
working out how to give change.

In the United Kingdom and countries using the euro currency another two demonations
of coin are available. The UK has £1 and £2 coins and the Euro Zone similarly has €1
and €2 coins. Extend your solution to cater for these larger denomination coins. If your
machine works on US dollars and you would like to accept the rarer half-dollar and one-
dollar coins, by all means go ahead.

Use IF…ELSE:
1. Install machine ;
2. Turn on power ;
3. Fill machine ;
4. chocolateStock ← 5 ;
5. muesliStock ← 5 ;
6. cheesePuffStock ← 5 ;

7. appleStock ← 5 ;
8. popcornStock ← 5 ;
9. WHILE (not the end of the day)

9.1 IF (button 1 pressed)
 IF (chocolateStock > 0)
 Dispense milk chocolate ;
 chocolateStock ← chocolateStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
9.2 ELSE IF (button 2 pressed)
 IF (muesliStock > 0)
 Dispense muesli bar ;
 muesliStock ← muesliStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
9.3 ELSE IF (button 3 pressed)
 IF (cheesePuffStock > 0)
 Dispense cheese puffs ;
 cheesePuffStock ← cheesePuffStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
9.4 ELSE IF (button 4 pressed)
 IF (appleStock > 0)
 Dispense apple ;
 appleStock ← appleStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
9.5 ELSE IF (button 5 pressed)
 IF (popcornStock >0)
 Dispense popcorn ;
 popcornStock ← popcornStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
9.6 ELSE IF (button 6 pressed)
 Print sales summary ;
9.7 ELSE // we know an invalid button was pushed, no need to
test for it.
 Display 'Invalid choice message' ;

 ENDIF
 ENDWHILE

Checking for sufficient money (only partial solution given for effect):

9. priceOfChocolateBar ← 10 ;
10. WHILE (not the end of the day)
 10.1 IF (button 1 pressed)
 IF (money > priceOfChocolateBar)
 IF (chocolateStock > 0)
 Dispense milk chocolate ;
 chocolateStock ← chocolateStock – 1 ;
 ELSE
 Display 'Sold out message' ;
 ENDIF
 ELSE
 Display 'Insufficient funds' message ;
 ENDIF
 10.2 ELSE IF (button 2 pressed)

 . . .
 . . .
 . . .

Algorithm for giving change:

1. leftover money – priceOfSnack ;
2. numberFifties ← leftover ÷ 50 ;
3. leftover ← change MOD 50 ;
4. numberTwenties ← leftover ÷ 20 ;
5. leftover ← leftover MOD 20 ;
6. numberTens ← leftover ÷ 10 ;
7. leftover ← leftover MOD 10 ;
8. numberFives ← leftover ÷ 5 ;
9. leftover leftover MOD 5 ;
10. numberTwos ← leftover ÷ 2 ;
11. numberOnes ← leftover MOD 2 ;
12. FOR count GOES FROM 1 TO numberFifties
 Dispense 50p coin ;
 ENDFOR
13. FOR count GOES FROM 1 TO numberTwenties
 Dispense 20p coin ;
 ENDFOR
14. FOR count GOES FROM 1 TO numberTens

 Dispense 10p coin ;
 ENDFOR
15. FOR count GOES FROM 1 TO numberFives
 Dispense 5p coin ;
 ENDFOR
16. FOR count GOES FROM 1 TO numberTwos
 Dispense 2p coin ;
 ENDFOR
17. FOR count GOES FROM 1 to numberOnes
 Dispense 1p coin ;
 ENDFOR

Using change algorithm:

9. priceOfChocolateBar ← 10 ;
10. WHILE (not the end of the day)
 10.1 IF (button 1 pressed)
 IF (money > priceOfChocolateBar)
 IF (chocolateStock > 0)
 Dispense milk chocolate ;
 chocolateStock ← chocolateStock – 1 ;
 Insert change algorithm here…
 ELSE
 Display 'Sold out message' ;
 ENDIF
 ELSE
 Display 'Insufficient funds' message ;
 ENDIF
 10.2 ELSE IF (button 2 pressed)

 . . .
 . . .
 . . .

Stocksfield Fire Service: Hazchem Signs
In this chapter you learned about alternative iteration and selection constructs. Examine
your EAC algorithm and replace IF statements with IF...ELSE constructs wherever
possible. What benefits does this bring?

Using IF ELSE
// First character
IF fireFightingCode is 1
 Use coarse spray ;

ELSE IF fireFightingCode is 2
 Use fine spray ;
ELSE IF fireFightingCode is 3
 Use foam ;
ELSE
 Use dry agent ;
ENDIF
// Second character
IF precautionsCode is P
 Use LTS ;
 Dilute spillage ;
 Risk of explosion ;
ELSE IF…
…
ELSE
 Use BA & Fire kit ;
 Contain spillage ;
ENDIF
// Third character
IF character is E
 Public hazard ;
ENDIF

What about dealing with an invalid code letter?

// First character
IF fireFightingCode is 1
 Use coarse spray ;
ELSE IF fireFightingCode is 2
 Use fine spray ;
ELSE IF fireFightingCode is 3
 Use foam ;
ELSE IF fireFightingCode is 4
 Use dry agent ;
ELSE
 Invalid fire fighting code ;
ENDIF
// Second character
IF precautionsCode is P
 Use LTS ;
 Dilute spillage ;
 Risk of explosion ;
ELSE IF…

…
ELSE IF precautionsCode is Z
 Use BA & Fire kit ;
 Contain spillage ;
ELSE
 Invalid precautions code ;
ENDIF
// Third character
IF publicHazardCode is E
 Public hazard ;
ELSE IF publicHazardCode is blank
 No hazard ;
ELSE
 Invalid public hazard code ;
ENDIF

Puzzle World: Roman Numerals and Chronograms
Examine your solutions to the Roman number problems and decide whether you need
to use any of the alternative iteration and selection constructs. Update your algorithms
accordingly.

Identifier Description Range of values
romanDigit A single roman numeral {I, V, X, L, C, D, M}
subSequence a compound roman number {IV, IX, XL, XC, CM}
romanNumber a complete roman number Many, e.g. I, LXI, MCMLXXIX, etc.
digitValue value of a roman numeral {1, 5, 10, 50, 100,

500,1000}
compoundValue value of compound number {4, 9, 50, 90, 900}

I think we now have some of the tools necessary to expand the solution from Chapter 4.
Here's where we left the algorithm for validating a roman number:

1. Look at first sub-sequence in the number ;
2. WHILE (sub-sequences to process)
 2.1. IF current sub-sequence less than next one in the
number
 2.1.2. Display 'This number is invalid' ;
 ENDIF
 2.2. Look at next sub-sequence ;
 ENDWHILE

It seems that we should be able to translate as we validate. However, to simplify the
problem we could just translate a number without worrying if it's valid or not. If we

examine any roman number, e.g. MCMLXXIX we can spot an easy way to calculate its
value: work backwards through the number from right to left. If the current numeral has a
higher or equal value to the one we just looked at then add its value to the total
otherwise subtract its value. So, working through MCMLXXIX backwards we get:
X=10, total = 10
I =1. Less than the previous X, so total = 9
X = 10. Greater than the previous I, so total = 19
X = 10. Same as previous, so total = 29
L=50. Greater than previous, so total = 79
M=1000. Greater than previous, so total = 1079.
C = 100. Less than previous, so total = 979.
M=1000. Greater than previous, so total = 1979.
Value of roman number is 1979.

We can express this algorithmically:

Determine length of roman number (no. of individual numerals)
total ← 0 ;
previous ← 0 ;
FOR counter GOES FROM length TO 1
 current ← numeral at position counter ;

 // Determine value of numeral
 IF (current = 'I')
 value ← 1 ;
 ELSE IF (current = 'V')
 value ← 5 ;
 ELSE IF (current = 'X')
 value ← 10 ;
 ELSE IF (current = 'L')
 value ← 50 ;
 ELSE IF (current = 'C')
 value ← 100 ;
 ELSE IF (current = 'D')
 value ← 500 ;
 ELSE
 value ← 1000 ;
 ENDIF
 IF (value < previous)
 total ← total - value ;
 ELSE
 total ← total + value ;
 ENDIF

 previous ← value ;
ENDFOR
Display total ;

This works nicely as long as the roman number is not malformed. To validate the
number we must do a bit more work and process the number from left to right.

For any given numeral inside the number there are two possibilities: it is greater than or
equal to the numeral that follows it or it is not. If it is greater or equal, then things are
simple -- we just add its value to the total. If it's less than the next numeral we need to
check to see if the compound it forms with the next digit is valid, i.e., we need to heed
the rules we discussed in previous chapters.
Rule 1: the compound must not begin with a 'V'
Rule 2: the second numeral must be either 5 or 10 times larger than the first numeral
Rule 3: if the first numeral is not the first numeral in the whole number, then the one
before it must be at least 10 times greater than it
Rule 4: the next but one numeral must also be less than the current one

We could define three variables rule1, rule2, rule3, and rule4. If we initialize them
to 1 and then set each of them to 0 if the rule it corresponds to is met, we can then add
the three variables together. If the sum is zero then the compound numeral is valid and
we can translate it and add it to the total.

IF (numeral ≠ 'V')
 rule1 ← 0 ;
ENDIF
IF (next character value = numeral × 5) OR (next character value =
numeral × 10)
 rule2 ← 0 ;
ENDIF
IF (previous ≠ 0) AND (previous ≥ (10 × numeral))
 rule3 ← 0 ;
ENDIF
IF (next but one numeral < numeral)
 rule4 ← 0 ;
ENDIF ;

Using our numeral translation algorithm from the simplified solution we can put it all
together:

previous ← 0 ;
next ← 0 ;

nextButOne ← 0 ;
counter ← 1 ;
WHILE (counter ≤ length of roman number)
 rule1 ← 0 ;
 rule2 ← 0 ;
 rule3 ← 0 ;
 rule4 ← 0 ;
 current ← character at the position given by counter ;
 // Determine value of numeral
 IF (current = 'I')
 value ← 1 ;
 ELSE IF (current = 'V')
 value ← 5 ;
 ELSE IF (current = 'X')
 value ← 10 ;
 ELSE IF (current = 'L')
 value ← 50 ;
 ELSE IF (current = 'C')
 value ← 100 ;
 ELSE IF (current = 'D')
 value ← 500 ;
 ELSE
 value ← 1000 ;
 ENDIF

 // Get value of next numeral
 IF (current not last character)
 next ← value of character at current+1 position
 // n.b. the algorithm for assigning a value to next is the
same as we just used for
 // finding the value of the current character immediately
above. I have not repeated them
 // here. Actually, what is needed is some way of taking this
repeated algorithm, storing it
 // somewhere else and using it when needed. This requires
creation of a 'function' which is
 // beyond the scope of this short book.
 ENDIF

 //Get value of next-but-one numeral
 IF (counter + 2 ≤ length of roman number) // if there is a next
but one character
 nextButOne ← value of character at current+2 position

 // Same algorithm again!
 ELSE
 nextButOne ← 0 ; // if there isn't a next but one, make the
variable zero
 ENDIF

 // Test to see if current numeral greater than or equal to the
next one
 IF (value ≥ next)
 total ← total + value ; // add it to total
 ELSE // Dealing with compound numeral

 // Establish whether the four rules have been met
 IF (value ≠ 5)
 rule1 ← 0 ;
 ENDIF
 IF (next = value × 5) OR (next = vaulue × 10)
 rule2 ← 0 ;
 ENDIF
 IF (previous ≠ 0) AND (previous ≥ (10 × value))
 rule3 ← 0 ;
 ENDIF
 IF (nextButOne < value)
 rule4 ← 0 ;
 ENDIF ;

 // If 4 rules ARE met
 IF (rule1 + rule2 + rule3 + rule4 = 0)
 total ← total + (next - value) // e.g. if compound = IX,
we subtract current value 1 from next value 10
 counter ← counter + 2 ; // need to skip over the compound
number to the next numeral
 previous ← value ; // update previous to equal current
numeral value
 ELSE // invalid number
 counter ← length of number + 1 ; // this will cause the
loop to terminate without processing the rest of the number
 valid ← 1 ; // show the number is invalid
 ENDIF
 ENDIF
ENDWHILE

IF (valid = 0)

 Display total ;
ELSE // invalid number
 Display 'number is invalid' ;
ENDIF

Note, we could remove the four rule variables by writing the following compound
condition for the IF statement that uses them:

IF (value ≠ 5) AND
 ((next = value × 5) OR (next = vaulue × 10)) AND
 ((previous ≠ 0) AND (previous ≥ (10 × value))) AND
 (nextButOne < value)

We then don't need to worry about setting and resetting rule1, rule2, rule3, and
rule4. The reason I used the rule variables was to initially simplify the problem. Now
that I understand how to deal with each rule I am minded to put them all together as
above.

Pangrams: Holoalphabetic Sentences
The pangram algorithm needs to be amended so that it allows the test to be run
on any number of sentences. The algorithm should keep testing sentences until
the user decides to finish. Rewrite your solution to incorporate this feature. What
iteration constructs could be used? How will you solve the problem of deciding
whether the user wants to continue? Explain why you used your chosen solution
strategy. What other loop constructs could you have used? How would that affect
the way the algorithm behaves? What other ways could you have tested to see if
the user wants to finish? What are the principal advantages and disadvantages of
your solution and these alternative solutions?

DO
 Get sentence from user
 Start at 'A' ;
 WHILE (letters left in the alphabet)
 Write down current letter of the alphabet ;
 Move to next letter ;
 ENDWHILE
 Starting at the first letter of the sentence
 WHILE (letters left in the sentence)
 Cross off letter on the paper that matches current letter ;
 Move to next letter ;
 ENDWHILE

 Start at 'A' ;
 WHILE (letters left in the alphabet)
 IF (letter not crossed out)
 Add 1 to number of letters not crossed out ;
 ENDIF
 Move to next letter ;
 ENDWHILE
 IF (number of letters not crossed out equals zero)
 Display 'Sentence is a pangram' ;
 ENDIF
 IF (number of letters not crossed out greater than zero)
 Display 'Sentence is NOT a pangram' ;
 ENDIF
 Display 'Do you want to test another sentence? Y/N' ;
 Get userResponse ;
WHILE (userResponse ≠ 'N') ;

I have used a DO...WHILE loop because it works in the same sequence that a user
would expect: enter a sentence then ask if another one should be processed. I could
have used a WHILE loop, but then I would either have to ask the user if he/she wants to
test a sentence before entering the loop for the first time (seems unnatural) or I would
have to set userResponse to a default value of 'Y' before the loop. By doing this I am
forcing the WHILE to iterate at least once, so I may as well use the at-least-once iteration
abstraction -- the DO...WHILE.

Online Bookstore: ISBNs
The ISBN validation problem is best suited to using a count-controlled loop for the part
which deals with multiplying the nine digits of the number with their respective weights.
Update your solution replacing the WHILE construct with an appropriately phrased FOR
loop.

You are now in a position to tackle the hyphenation problem. For correct presentation,
the ten digits of an ISBN should be divided into four parts separated by hyphens:
• Part 1: The country or group of countries identifier
• Part 2: The publisher identifier
• Part 3: The title identifier
• Part 4: The check digit
To keep matters as simple as possible we will only deal with hyphenating ISBNs that
have a group/country code of 0 or 1 (the English language groups). The positions of the
hyphens are determined by the publisher codes. To hyphenate correctly knowledge of
the prefix ranges for each country or group of countries is needed. The publisher code
ranges in the English group (U.S., U.K., Canada, Australia, New Zealand, etc) are given

in Table 6.9.

Group identifier '0' publisher code
ranges

If publisher ranges are
between Insert hyphens after

00--19 00--19 1st digit 3rd digit 9th digit
200--699 20-69 " 4th " "

7000---8499 70-84 " 5th " "
85000--89999 85-89 " 6th " "

900000---949999 90-94 " 7th " "
9500000--9999999 95-99 " 8th " "

Using Table 6.9 develop an algorithm for displaying with correctly placed hyphens any
ISBN that starts with digit 0.

For an extra challenge, allow ISBNs with a group code of 1 to be hyphenated. The rules
for this group are slightly different than for group '0' and are given in Table 6.10.

Group identifier '1' publisher code
ranges

If publisher ranges are
between Insert hyphens after

00--09 00--09 1st digit 3rd digit 9th digit
100--399 10-39 " 4th " "

4000---5499 40-54 " 5th " "
55000--86979 5500-8697 " 6th " "

869800---998999 8698-9989 " 7th " "
999000--9999999 9990-9999 " 8th " "

This problem is slightly trickier than the group 0 hyphenation because you are not
always just testing the first two digits of the publisher code. Use your solution to the
group 0 hyphenation problem as a starting point and then work through the HTTLAP
strategy to help you arrive at a solution to this problem.

Validation problem
Display 'Enter a ten-character ISBN' ;
Get ISBN ;
total ← 0 ;
FOR counter GOES FROM 1 TO 9
 currentDigit ← character number 'counter' of ISBN ;
 total ← total + currentDigit ;
ENDFOR
checkDigit ← 10th character of ISBN ;
ENDIF
remainder ← 11 − (total ÷ 11) ;
calcCheck ← 11 − remainder ;
IF (calcCheck = 10)

 calcCheck ← 'X' ;
ENDIF
IF (calcCheck = checkDigit)
 Display ('ISBN valid') ;
ENDIF

Hyphenation problem
Here's our outline algorithm from Chapter 3:

1. Determine the group code and write it out ;
2. Write a hyphen ;
3. Determine the publisher code and write it out ;
4. Write a hyphen ;
5. Determine the title code and write it out ;
6. Write a hyphen ;
7. Write out the check digit ;

We are told only to deal with group codes of 0 or 1, so determining the group code
simply requires seeing whether the first character is a '0' or a '1'. All we have to do with
the group code, then, is write it out followed by a hyphen. We can then use it as the
basis for a top-level selection for dealing with ISBNs in either group:

Display 'Enter 10-character un-hyphenated ISBN' ;
currentDigit ← first character of ISBN ;
// Determine group code and write it out.
Display currentDigit ;
Display '-' ;
IF (currentDigit ='0') // Group code 0
 // Process a group 0 ISBN ;
ELSE
 // Process a group 1 ISBN ;
ENDIF ;

To determine the publisher code we need to use the tables above which tell us how
many characters the publisher code takes depending on its first two characters. The
tables also then give us the remaining hyphenation positions for once we know the
length of the publisher code we also know the length of the title code: we know the group
code is 1 character (we're only dealing with groups 0 and 1), we also know the check
digit is 1 character, so that leaves only 8 characters for the publisher and title. However
long the publisher code is, the title code must, therefore be 8-publisher code length. All
we need to test the publisher code is digits 2 and 3. We could make a temporary

variable called codePrefix which is the value of the second and third digits stitched
together. Here goes:

Display 'Enter 10-character un-hyphenated ISBN' ;
currentDigit ← first character of ISBN ;
// Determine group code and write it out.
Display currentDigit ;
Display '-' ;
IF (currentDigit ='0') // Group code 0
 codePrefix ← (second digit × 10) + third digit ;
 IF (codePrefix ≤ 19)
 Display characters 2 through 3 ;
 Display '-' ;
 Display characters 4 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 69)
 Display characters 2 through 4 ;
 Display '-' ;
 Display characters 5 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 84)
 Display characters 2 through 5 ;
 Display '-' ;
 Display characters 6 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 89)
 Display characters 2 through 6 ;
 Display '-' ;
 Display characters 7 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 94)
 Display characters 2 through 7 ;
 Display '-' ;
 Display characters 8 through 9 ;
 Display '-' ;
 ELSE
 Display characters 2 through 8 ;
 Display '-' ;
 Display character 9 ;
 Display '-' ;
 ENDIF
 Display character 10 ; // the check digit
ELSE

 // Process a group 1 ISBN ;
ENDIF ;

Hyphenating group is slightly trickier as the publisher code depends on the value of the
first two characters up to 54 but then 4 characters for the remaining codes. Actually, this
is quite easy when you spot it. If you take a value such as 8899 and divide it by 100 we
get the result 88 -- there are 88 hundreds in 8899. So, all we need to do is the following:

// Process a group 1 ISBN
codePrefix ← (second digit × 1000) + (third digit × 100) + (fourth
digit × 10) + fifth digit ;
 IF (codePrefix ÷ 100 ≤ 9)
 Display characters 2 through 3 ;
 Display '-' ;
 Display characters 4 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ÷ 100 ≤ 39)
 Display characters 2 through 4 ;
 Display '-' ;
 Display characters 5 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ÷ 100 ≤ 54)
 Display characters 2 through 5 ;
 Display '-' ;
 Display characters 6 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 8697)
 Display characters 2 through 6 ;
 Display '-' ;
 Display characters 7 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 9989)
 Display characters 2 through 7 ;
 Display '-' ;
 Display characters 8 through 9 ;
 Display '-' ;
 ELSE
 Display characters 2 through 8 ;
 Display '-' ;
 Display character 9 ;
 Display '-' ;
 ENDIF
 Display character 10 ; // the check digit

Now we can put the whole lot together:

Display 'Enter 10-character un-hyphenated ISBN' ;
currentDigit ← first character of ISBN ;
// Determine group code and write it out.
Display currentDigit ;
Display '-' ;
IF (currentDigit ='0') // Group code 0
 codePrefix ← (second digit × 10) + third digit ;
 IF (codePrefix ≤ 19)
 Display characters 2 through 3 ;
 Display '-' ;
 Display characters 4 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 69)
 Display characters 2 through 4 ;
 Display '-' ;
 Display characters 5 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 84)
 Display characters 2 through 5 ;
 Display '-' ;
 Display characters 6 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 89)
 Display characters 2 through 6 ;
 Display '-' ;
 Display characters 7 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 94)
 Display characters 2 through 7 ;
 Display '-' ;
 Display characters 8 through 9 ;
 Display '-' ;
 ELSE
 Display characters 2 through 8 ;
 Display '-' ;
 Display character 9 ;
 Display '-' ;
 ENDIF
 Display character 10 ; // the check digit

ELSE
 // Process a group 1 ISBN
 codePrefix ← (second digit × 1000) + (third digit × 100) +
(fourth digit × 10) + fifth digit ;
 IF (codePrefix ÷ 100 ≤ 9)
 Display characters 2 through 3 ;
 Display '-' ;
 Display characters 4 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ÷ 100 ≤ 39)
 Display characters 2 through 4 ;
 Display '-' ;
 Display characters 5 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ÷ 100 ≤ 54)
 Display characters 2 through 5 ;
 Display '-' ;
 Display characters 6 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 8697)
 Display characters 2 through 6 ;
 Display '-' ;
 Display characters 7 through 9 ;
 Display '-' ;
 ELSE IF (codePrefix ≤ 9989)
 Display characters 2 through 7 ;
 Display '-' ;
 Display characters 8 through 9 ;
 Display '-' ;
 ELSE
 Display characters 2 through 8 ;
 Display '-' ;
 Display character 9 ;
 Display '-' ;
 ENDIF
 Display character 10 ; // the check digit
 // Process a group 1 ISBN ;
ENDIF ;

