
Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 1 of 8

Chapter 10

End of Chapter Exercises
1. What is the difference between a function (expression procedure) and a

procedure (command procedure)?

In short, a procedure goes away and does something; a function goes
away and does something and then gives you an answer back.
Functions always return a value.

2. A function is required that takes a single parameter representing a
temperature in degrees Fahrenheit and returns the Celsius equivalent.
What is missing from the following solution? If the omission is corrected,
are there some statements that can be removed?

FUNCTION FahrenheitToCelsius (real fahrenheit)RETURNS real

 real:celsius ;

 celsius ← (fahrenheit – 32) ÷ 1.8 ;

ENDFUNCTION

3. Design a function that takes two integer parameters and returns the
larger of the two. What will it do when both arguments have the same
value?

FUNCTION Larger (integer:a, integer:b) RETURNS integer

 IF (a > b)

 RETURN a ;

 ELSE

 RETURN b ;

 ENDIF

ENDFUNCTION

4. Write a function that takes four parameters: day, month, year (all
integers), and UKFormat (a Boolean). The function should combine the
three date parameters into a single string which it should then return.
The UKFormat parameter is used to determined how the string is put
together. If UKFormat is true then the return string will be in the form
dd/mm/yy otherwise it should be in the form mm/dd/yy. For example, if
the four arguments were 1, 12, 1984, true (December 1, 1984) then the
returned string would be ʻ1/12/1984ʼ. If UKFormat were false, then it
would return ʻ12/1/1984ʼ.

FUNCTION Date (integer:day, integer:month, integer:year,

 boolean:UKFormat) RETURNS string ;

 string:theDate ;

 theDate ← '' ;

 IF (UKFormat)

 theDate ← theDate + day + '/' + month + '/' + year ;

 ELSE

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 2 of 8

 theDate ← theDate + month + '/' + day + '/' + year ;

 ENDIF

 RETURN theDate ;

ENDFUNCTION

5. Design a function that takes a single string parameter and returns the
number of space characters in the string as an integer.

FUNCTION Spaces (string:text) RETURNS integer

 integer:counter,

 numberSpaces ;

 numberSpaces ← 0 ;

 FOR counter GOES FROM 0 TO Length (text) -1

 IF text [counter] = ' '

 numberSpaces ← numberSpaces + 1 ;

 ENDIF

 RETURN numberSpaces ;

ENDFUNCTION

6. A function is required that takes a single parameter representing a
temperature in degrees Fahrenheit and returns the Celsius equivalent.
What is missing from the following solution? If the omission is corrected,
are there some statements that can be removed?

FUNCTION FahrenheitToCelsius (real fahrenheit)RETURNS real

 real:celsius ;

 celsius ← (fahrenheit – 32) ÷ 1.8 ;

ENDFUNCTION

The RETURN statement is missing:

FUNCTION FahrenheitToCelsius (real:fahrenheit)RETURNS real

 real:celsius ;

 celsius ← (fahrenheit – 32) ÷ 1.8 ;

 RETURN celsius ;

ENDFUNCTION

We donʼt need the extra variable Celsius and could write instead:

FUNCTION FahrenheitToCelsius (real:fahrenheit)RETURNS real

 RETURN (fahrenheit – 32) ÷ 1.8 ;

ENDFUNCTION

7. Amend Solution 5.9 by adding two procedures AddSugar and AddMilk.
Then replace the statements in the algorithm that deal with adding milk
and sugar with calls to the new procedures.

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 3 of 8

Replace statements 2.11.1 to 2.11.5 with:

2.11.1 AddSugar ;

2.11.2 AddMilk

Then add the following two procedures:

PROCEDURE AddSugar

 sugarsAdded ← 0 ;

 Get (sugarsRequired) ;

 WHILE (sugarsAdded ≠ sugarsRequired)

 Add 1 spoon sugar ;

 sugarsAdded ← sugarsAdded + 1 ;

 ENDWHILE

ENDPROCEDURE

PROCEDURE AddMilk

 Get (milkRequired) ;

 IF (milkRequired)

 Add milk ;

 ENDIF

ENDPROCEDURE

8. Design a procedure called swap that swaps the values of its two integer
reference parameters, and then write a line of pseudo-code that
invokes the procedure. What would happen if value parameters were
used instead of reference parameters?

Procedure swap.

PROCEDURE Swap (REFERENCE:integer:a, REFERENCE:integer:b)

 integer:temp ;

 temp ← a ;

 a ← b ;

 b ← temp ;

ENDPROCEDURE

If you want to be really perverse and make it hard to understand, try this
version which doesnʼt use a temporary variable:

PROCEDURE Swap (REFERENCE:integer:a, REFERENCE:integer:b)

 a ← a + b ;

 b ← a – b ;

 a ← a – b ;

ENDPROCEDURE

If you donʼt believe me, try it out with different values for a and b. It

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 4 of 8

doesnʼt matter if a is greater than or less than b or if a or b is negative

9. Write a function IsEven that determines whether its single value integer
parameter is even or odd. If the parameter is even the function should
return a Boolean value True otherwise it should return Boolean False.

Function IsEven.

FUNCTION IsEven (integer:number) RETURNS Boolean ;

IF (number MOD 2 = 0)

 RETURN True ;

ELSE

 RETURN False ;

ENDFUNCTION

10. In the exercises for Chapter 9 you were asked to write an algorithm to
convert a lower-case letter into an uppercase one. Assume HTTLAP
has two functions Ord and Chr with the following headers:

FUNCTION Ord (character:aCharacter) RETURNS integer

FUNCTION Chr (integer:ordinalValue) RETURNS character

Ord accepts a single character value in its parameter and returns the
ordinal value (ASCII code) of that character. Chr accepts an ASCII value
in its integer parameter and returns the corresponding character.

Make use of Ord and Chr to write your own function ToUpper to convert
lower-case letters to upper-case. The function should take a single
character parameter and return a character which is the upper-case
equivalent of the parameter. If the character in the parameter is not a
lower-case character then the function should simply give that character
back as its return value. For example
myLetter ← ToUpper ('e') ;

would place the character 'E' in myLetter whilst

myLetter ← ToUpper ('Z') ;

would place 'Z' in myLetter and

myLetter ← ToUpper ('3') ;

would place '3' in myLetter.

FUNCTION ToUpper (character:letter) RETURNS character

 IF (letter ≥ 'a') AND (letter ≤ 'z')

 RETURN Chr(Ord(letter)-30) ;

 ELSE

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 5 of 8

 RETURN letter ;

 ENDIF

ENDFUNCTION

11. Take the van loading solution from Chapter 5 (Solution 5.18) and move
the contents of the inner WHILE loop to a sub-program. Decide whether
the sub-program should be a procedure or a function and also
determine what parameters (if any) it needs.

Replace statements 5.2.1 to 5.2.3 with:

5.2.1 LoadVan (REFERENCE:payload, parcelWeight);

5.2.2 Get next parcelWeight ;

Then add this procedure:

PROCEDURE LoadVan (REFERENCE:integer:load, integer:weight)

 Load parcel on van ;

 load ← load + weight ;

ENDPROCEDURE

Projects
StockSnackz Vending Machine

Amend your solution to take into account any necessary data types
introduced in this chapter. Consider carefully the data types needed to
handle the monetary values.

integer:chocolateStock,

 muesliStock,

 cheesePuffStock,

 appleStock,

 popcornStock ;

Stocksfield Fire Service

Write your solution to the EAC decoding problem as an algorithm using the
more formalized HTTLAP pseudo-code introduced in this chapter. Make sure
you declare all your variables with appropriate data types. You need to think
carefully about what you are going to use to store the EAC. The easiest
method to get you started is to store each of the three characters of the EAC
in separate character variables.

character:fireFightingCode,

 precautionsCode,

 publicHazardCode ;

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 6 of 8

Get (keyboard, REFERENCE:fireFightingCode,

REFERENCE:precautionsCode, REFERENCE:publicHazardCode) ;

// First character

IF (fireFightingCode = '1')

 Display ('Use coarse spray↵') ;

ELSE IF (fireFightingCode = '2')

 Display ('Use fine spray↵') ;

ELSE IF (fireFightingCode = '3')

 Display ('Use foam↵') ;

ELSE IF (fireFightingCode = '4')

 Display ('Use dry agent↵') ;

ELSE

 Display ('Invalid fire fighting code↵') ;

ENDIF

// Second character

IF (precautionsCode = 'P')

 Display ('Use LTS↵') ;

 Display (Dilute 'spillage↵') ;

 Display ('Risk of explosion↵') ;

ELSE IF…

…

ELSE IF (precautionsCode = 'Z')

 Display ('Use BA & Fire kit↵') ;

 Display ('Contain spillage↵') ;

ELSE

 Display ('Invalid precautions code↵') ;

ENDIF

// Third character

IF (publicHazardCode = 'E')

 Display ('Public hazard↵') ;

ELSE IF (publicHazardCode = ' ')

 Display ('No hazard↵') ;

ELSE

 Display ('Invalid public hazard code↵') ;

ENDIF

Alternatively, we could access the EAC as a string:

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 7 of 8

string:EAC ;

Get (keyboard, REFERENCE:EAC) ;

IF (EAC[0]= '1')

 Display…

Puzzle World: Roman numerals & chronograms

Chronograms (also called eteostichons) are sentences in which certain
letters, when rearranged, stand for a date and the sentence itself is about the
subject to which the date refers. All letters that are also roman numerals (I, V,
X, L, C, D, M) are used to form the date. Sometimes the sentence is written
such that the roman numeral letters already give a well-formed roman
number. For example, in the sentence:

My Day Closed Is In Immortality

if we ignore the lower-case letters we get the number MDCIII which equals
1603. The sentence commemorates the death of Queen Elizabeth the First of
England in 1603. More commonly, the roman numbers are not well formed
and the date is obtained by adding the values of all the roman numerals in
the sentence, as in:

LorD haVe MercI Vpon Vs. (V used as a U, mercy spelt with an ʻiʼ)

This is a chronogram about the Great Fire of London in 1666. The date is
given by L+D+V+M+I+V+V = 50 + 500 + 5 + 1000 + 1 + 5 + 5 = 1666.

Outline the basic algorithm for finding and displaying in decimal the date
ʻhiddenʼ in a chronogram. To begin, assume that only upper-case letters are
used for roman numerals (I=1, but i is a letter). Also, assume that the roman
numerals do not have to form a valid string of numerals and that the hidden
date is obtained simply by summing the values of all roman numerals found
(as in the ʻLord have mercy upon usʼ example above).

For an extra challenge, extend this solution to accept only chronograms that
have a well-formed roman number in them. Thus “My Day Closed Is In
Immortality” would give the valid date MDCIII, whilst “LorD haVe MercI Vpon
Vs” would not give us a result as LDVMIVV is not a well-formed number
(1666 should be written as MDCLXVI).

Basic problem:
string:chronogram ;

integer:counter,

 value ;

char:current ;

value ← 0 ;

chronogram ← 'LorD haVe MercI Vpon Vs' ;

FOR counter GOES FROM 0 TO Length (chronogram) - 1

 current ← chronogram [counter] ;

 IF (current ≥'A') AND (current ≤ 'Z')

Chapter10_Solutions.rtf 2/3/2008 2:39

 Page 8 of 8

 value = value + value of current digit ;

 ENDIF

ENDFOR

Extended version:

string:chronogram,

 numberString ;

integer:counter,

 value ;

char:current ;

value ← 0 ;

numberString ← '' ;

chronogram ← 'LorD haVe MercI Vpon Vs' ;

FOR counter GOES FROM 0 TO Length (chronogram) - 1

 current ← chronogram [counter] ;

 IF (current ≥'A') AND (current ≤ 'Z')

 numberString ← numberString + current ;

 ENDIF

ENDFOR

Now we have the hidden date stored in numberString we can simply validate
and decode it as per our previous algorithms.

Pangrams: holoalphabetic sentences

Online bookstore: ISBNs

